8.某種產(chǎn)品的廣告費(fèi)用支出x(萬元)與銷售額y(萬元)之間有如下的對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)求回歸直線方程;
(2)據(jù)此估計(jì)廣告費(fèi)用為12萬元時(shí)的銷售額約為多少?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\widehat{y}$=$\widehat$x+$\widehat{a}$.

分析 (1)根據(jù)所給的數(shù)據(jù)先做出橫標(biāo)和縱標(biāo)的平均數(shù),利用最小二乘法寫出線性回歸方程系數(shù)的表達(dá)式,把樣本中心點(diǎn)代入求出a的值,得到線性回歸方程.
(2)根據(jù)所給的變量x的值,把值代入線性回歸方程,得到對(duì)應(yīng)的y的值,這里的y的值是一個(gè)預(yù)報(bào)值.

解答 解:(1)求回歸直線方程$\overline{x}$=$\frac{2+4+5+6+8}{5}$=5$\overline{y}$=$\frac{30+40+60+50+70}{5}$=50
b=$\frac{1380-25×50}{145-5×25}$=6.5
a=50-6.5×5=17.5
∴因此回歸直線方程為y=6.5x+17.5;
(2)當(dāng)x=12時(shí),預(yù)報(bào)y的值為y=12×6.5+17.5=95.5萬元. 
即廣告費(fèi)用為12萬元時(shí),銷售收入y的值大約是95.5萬元.

點(diǎn)評(píng) 本題考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是求出線性回歸方程的系數(shù),這是后面解題的先決條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.2016年11月21日是附中建校76周年校慶日,為了了解在校同學(xué)們對(duì)附中的看法,學(xué)校進(jìn)行了調(diào)查,從全校所有班級(jí)中任選三個(gè)班,統(tǒng)計(jì)同學(xué)們對(duì)附中的看法,情況如下表:
對(duì)附中的看法非常好,附中推行素質(zhì)教育,身心得以全面發(fā)展很好,我的高中生活很快樂很充實(shí)
A班人數(shù)比例$\frac{3}{4}$$\frac{1}{4}$
B班人數(shù)比例$\frac{2}{3}$$\frac{1}{3}$
C班人數(shù)比例$\frac{1}{2}$$\frac{1}{2}$
(1)從這三個(gè)班中各選一位同學(xué),求恰好有2人認(rèn)為附中“非常好”的概率(用比例作為相應(yīng)概率);
(2)若在B班按所持態(tài)度分層抽樣,抽取9人,再?gòu)倪@9人中任意選取3人,記認(rèn)為附中“非常好”的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中是奇函數(shù)的有幾個(gè)( 。
①$y=\frac{{{a^x}+1}}{{{a^x}-1}}$;
②$y=\frac{{lg({1-{x^2}})}}{{|{x+3}|-3}}$;
③y=ln|x-1|;
④$y={log_a}\frac{1+x}{1-x}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx.
(1)求f(x)在點(diǎn)(1,f(1))處的切線;
(2)若?x∈[1,+∞),f(x)≤m(${x-\frac{1}{x}}$)恒成立,求實(shí)數(shù)m的取值范圍;
(3)求證:ln(2n+1)<$\sum_{k=1}^n{\frac{4k}{{4{k^2}-1}}},({n∈{N_+}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a,b,c為互不相等的正數(shù),則下列不等式不一定成立的是( 。
A.|a-b|≤|a|+|b|B.|a-b|≤|a-c|+|b-c|C.$\frac{a}$<$\frac{b+c}{a+c}$D.a2+$\frac{1}{{a}^{2}}$≥a+$\frac{1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\sqrt{3}$sinx-acosx 的圖象的一條對(duì)稱軸是x=$\frac{5π}{3}$,則g(x)=asinx+cosx=Asin(ωx+φ)(A>0,ω>0)的一個(gè)初相是( 。
A.-$\frac{3π}{4}$B.-$\frac{π}{4}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}滿足a1+2a2+…+nan=4-$\frac{n+2}{{{2^{n-1}}}}$,n∈N*
(1)求a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)${b_n}=1+{log_{\frac{1}{2}}}{a_n}$,求證:$\frac{1}{b_1^2}+\frac{1}{b_2^2}+…+\frac{1}{b_n^2}<\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=sinx-cosx,x∈[0,$\frac{π}{2}$]的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)($\overrightarrow{a}$+$\overrightarrow$)2;
(3)|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

同步練習(xí)冊(cè)答案