分析 設(shè)|NF2|=t,可得|PF2|=t,連接MF1,NF1,可得|MF1|=t,由雙曲線的定義可得,|MF1|-|MF2|=2a,即有|MF2|=t-2a,再由勾股定理,可得t,再由|PF1|=t+2a,在直角三角形MPF1中,運(yùn)用勾股定理,可得t,解方程可得a,b的關(guān)系,即可得到所求漸近線方程.
解答 解:設(shè)|NF2|=t,可得|PF2|=t,
連接MF1,NF1,可得|MF1|=t,
由雙曲線的定義可得,|MF1|-|MF2|=2a,
即有|MF2|=t-2a,
由NF2⊥PF2,可得t2+(t-2a)2=4c2=4a2+4b2,
解得t=a+$\sqrt{{a}^{2}+2^{2}}$,
連接PF1,可得|PF1|-|PF2|=2a,
即有|PF1|=t+2a,在直角三角形MPF1中,可得
(t+2a)2=t2+(2t-2a)2,
解得t=3a,
由a+$\sqrt{{a}^{2}+2^{2}}$=3a,化為2b2=3a2,
即為b=$\frac{\sqrt{6}}{2}$a,
可得漸近線方程為y=±$\frac{a}$x,
即為y=±$\frac{\sqrt{6}}{2}$x.
故答案為:y=±$\frac{\sqrt{6}}{2}$x.
點(diǎn)評 本題考查雙曲線的漸近線方程的求法,注意運(yùn)用雙曲線的定義和勾股定理,考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1200元 | B. | 2400元 | C. | 3600元 | D. | 3800元 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 80 | B. | 90 | C. | 20 | D. | 20或90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com