已知圓O:x2+y2=4和點(diǎn)M(1,a).
(1)若過點(diǎn)M有且只有一條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
(2)若a=
2
,求過點(diǎn)M的最短弦AC與最長(zhǎng)弦BD所在的直線方程.并求此時(shí)的SABCD
考點(diǎn):圓的切線方程,直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:(1)要求過點(diǎn)M的切線方程,關(guān)鍵是求出切點(diǎn)坐標(biāo),由M點(diǎn)也在圓上,故滿足圓的方程,則易求M點(diǎn)坐標(biāo),然后代入圓的切線方程,整理即可得到答案.
(2)當(dāng)a=
2
時(shí),M(1,
2
)在圓x2+y2=4內(nèi),由于圓內(nèi)弦最長(zhǎng)的即是圓的直徑即BD為直徑,而AC是過M且與BD垂直的弦,此時(shí)DB=4,圓心(0,0)到直線AC的距離d=
3
,從而可得,AC=2,即可求出此時(shí)的SABCD
解答: 解:(1)由條件知點(diǎn)M在圓O上,
∴1+a2=4
∴a=±
3

當(dāng)a=
3
時(shí),點(diǎn)M為(1,
3
),kOM=
3
,
此時(shí)切線方程為:y-
3
=-
3
3
(x-1)
即:x+
3
y-4=0;
當(dāng)a=-
3
時(shí),點(diǎn)M為(1,-
3
),kOM=-
3
,
此時(shí)切線方程為:y+
3
=-
3
3
(x-1)
即:x-
3
y-4=0
∴所求的切線方程為:x+
3
y-4=0或即:x-
3
y-4=0
(2)當(dāng)a=
2
時(shí),M(1,
2
)在圓x2+y2=4內(nèi),由于圓內(nèi)弦最長(zhǎng)的即是圓的直徑即BD為直徑,而AC是過M且與BD垂直的弦
此時(shí)DB=4,圓心(0,0)到直線AC的距離d=
3
,
從而可得,AC=2,∴S=
1
2
×2×4
=4.
點(diǎn)評(píng):本題考查的是圓的切線方程,即直線與圓方程的應(yīng)用.(求過一定點(diǎn)的圓的切線方程,首先必須判斷這點(diǎn)是否在圓上.若在圓上,則該點(diǎn)為切點(diǎn),若點(diǎn)P(x0,y0)在圓(x-a)2+(y-b)2=r2(r>0)上,則 過點(diǎn)P的切線方程為(x-a)(x0-a)+(y-b)(y0-b)=r2(r>0);若在圓外,切線應(yīng)有兩條.一般用“圓心到切線的距離等于半徑長(zhǎng)”來(lái)解較為簡(jiǎn)單.若求出的斜率只有一個(gè),應(yīng)找出過這一點(diǎn)與x軸垂直的另一條切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-cos2x-sinx+1的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)n∈N*,則C
 
0
n
+C
 
1
n
6+C
 
2
n
62+C
 
3
n
63+…+C
 
n
n
6n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>1,則函數(shù)y=(
x
|x|
)•ax的圖象的基本形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2mx+1.
(1)m=2時(shí),求f(x)在?x∈[0,1]上的最大值;
(2)若x2-2mx+1>0對(duì)?x∈[0,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,
m
=(b,c),
n
=(cosC,cosB)且
m
n
=-2acosA,(Ⅰ)求角A;
(Ⅱ)若a=2
3
,△ABC的面積為
3
,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(1,2)則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是王珊早晨離開家邊走邊背誦英語(yǔ)過程中離家距離y與行走時(shí)間x之間函數(shù)關(guān)系的圖象.若用黑點(diǎn)表示王珊家的位置,則王珊步行走的路線可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)過點(diǎn)(2,
2
)
,則f(x)的反函數(shù)為f-1(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案