平面,直線,,且,則( 。
A.B.斜交C.D.位置關(guān)系不確定
D

分析:由面面垂直的性質(zhì)知在其中一個(gè)平面內(nèi),垂直于它們交線的直線必垂直于另一個(gè)平面,故只需取m垂直于α和β的交線,則b可為α內(nèi)的任何一條直線,則b與β位置關(guān)系不確定
解答:解:設(shè)α∩β=c,當(dāng)m⊥c時(shí),由面面垂直的性質(zhì)知m⊥α,
因?yàn)閎?α,所以b⊥m,
所以b可為α內(nèi)的任何一條直線,
所以b與β位置關(guān)系不確定
故選D
點(diǎn)評(píng):本題考查空間的線面位置關(guān)系,考查空間想象能力和邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,,分別為,的中點(diǎn),四邊形是邊長為的正方形.

(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論正確的是(    )
A.若直線平行于面內(nèi)的無數(shù)條直線,則
B.過直線外一點(diǎn)有且只有一個(gè)平面和該直線平行
C.若直線∥直線,直線平面,則平行于內(nèi)的無數(shù)條直線
D.若兩條直線都和第三條直線垂直,則這兩條直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中,AC=BC=AA1=2,∠ACB=90°,D、E、F分別為AC、AA1、AB的中點(diǎn).
(Ⅰ)求EF與AC1所成角的大。
(Ⅱ)求直線B1C1到平面DEF的距離
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間直角坐標(biāo)系中,已知點(diǎn)P(x,y,z),關(guān)于下列敘述
①點(diǎn)P關(guān)于x軸對(duì)稱的坐標(biāo)是P1(x,-y,z)
②點(diǎn)P關(guān)于yox軸對(duì)稱的坐標(biāo)是P2(x,-y,-z)
③點(diǎn)P關(guān)于y軸對(duì)稱的坐標(biāo)是P3(x,-y,z)
④點(diǎn)P關(guān)于原點(diǎn)對(duì)稱的坐標(biāo)是P4(-x,-y,-z),其中正確的個(gè)數(shù)是       (    )
A.0B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線及平面,則下列條件中使//成立的是  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,菱形的對(duì)角線交于點(diǎn)、分別是、的中點(diǎn).平面平面,.
求證:(1)平面∥平面;
(2)⊥平面
(3)平面⊥平面
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方形中,沿對(duì)角線將正方形折成一個(gè)直二面角,則點(diǎn)到直線的距離為(     )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在直三棱柱中,、分別是、的中 點(diǎn),點(diǎn)上,。
求證:(1)EF∥平面ABC;           
(2)平面平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案