設(shè)函數(shù)
(1)求函數(shù)f(x)最小正周期;
(2)設(shè)△ABC的三個內(nèi)角h(x)、B、C的對應(yīng)邊分別是a、b、c,若,,,求b.
【答案】分析:(1)本題考查三角函數(shù)的性質(zhì),首先要把原式進行整理,用兩角和的余弦公式展開,合并同類項,變?yōu)閥=Asin(ωx+φ)的形式,再用周期的公式得到結(jié)果.
(2)本題結(jié)合三角形的問題求解,注意三角形本身的隱含條件,先根據(jù)上一問的結(jié)果做出角C的正弦值,角B的正弦值,最后應(yīng)用正弦定理解出要求的邊長.
解答:解:(I)
=+
=
=
∵ω=2,∴
∴f(x)的最小正周期為π.
(II)由(I)得f(x)=,
=
,∴=,
,
∵△ABC中,,
由正弦定理,得,

點評:這是一個適合做高考題的題目,考查的內(nèi)容符合大綱要求,包含三角函數(shù)的性質(zhì)和解三角形,題目難度適當(dāng),知識點合理,能夠培養(yǎng)學(xué)生的觀察能力,邏輯推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-cos2x-4tsin
x
2
cos
x
2
+2t2-3t+4,x∈R,其中|t|≤1,將f(x)的最小值記為g(t).
(1)求函數(shù)g(t)的表達式;
(2)判斷g(t)在[-1,1]上的單調(diào)性,并求出g(t)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+bx+c,-4≤x<0
-x+3,0≤x≤4
,且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并寫出函數(shù)f(x)的定義域、值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•杭州一模)設(shè)函數(shù)f(x)=
x2
ax-2
(a∈N*),又存在非零自然數(shù)m,使得f(m)=m,f(-m)<-
1
m
成立.
(1)求函數(shù)f(x)的表達式;
(2)設(shè){an}是各項非零的數(shù)列,若f(
1
an
)=
1
4(a1+a2+…+an)
對任意n∈N*成立,求數(shù)列{an}的一個通項公式;
(3)在(2)的條件下,數(shù)列{an}是否惟一確定?請給出判斷,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江溫州市十校聯(lián)合體高三上學(xué)期期初聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù),

(1)求函數(shù)的極大值;

(2)記的導(dǎo)函數(shù)為,若時,恒有成立,試確定實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省高三第四次四校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

中,角的對邊分別為,且

(1)  求角

   (2)  設(shè)函數(shù)將函數(shù)的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的,把所得圖象向右平移個單位,得到函數(shù)的圖象,求函數(shù)的對稱中心及單調(diào)遞增區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊答案