(本題滿分12分)在平面直角坐標系中,的兩個頂點的坐標分別為,平面內(nèi)兩點同時滿足一下條件:①;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中的軌跡交于兩點,求的取值范圍。
解:(1)設
  ∴在線段的中垂線上,又
  ∵  ∴      ………………………………. 2分
  ∴
      ………………………………. 4分

,即
所以定點C的軌跡方程為      ………………………………. 6分
(2)設直線的方程為:,
消去得:  ①
      ………………………………. 8分

      …………………. 10分
,  ∴
的取值范圍為      ………………………………. 12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若不過點的動直線與橢圓相交于兩點,且求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知A(1,1)是橢圓)上一點,F1­,F(xiàn)2
 
是橢圓上的兩焦點,且滿足 .
(I)求橢圓方程;
(Ⅱ)設C,D是橢圓上任兩點,且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知點是橢圓一點,離心率,是橢圓的兩
個焦點.
(1)求橢圓的面積;
(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知分別是橢圓的左、右 焦點,已知點 滿足,且。設是上半橢圓上且滿足的兩點。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓:的左右焦點分別為,離心率為,兩焦點與上下頂點形成的菱形面積為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓交于A, B兩點,四邊形為平行四邊形,為坐標原點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)設、分別是橢圓,的左、右焦點,是該橢圓上一個動點,且。
、求橢圓的方程;
、求出以點為中點的弦所在的直線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓C: 的準線方程是
A.B.C.D.

查看答案和解析>>

同步練習冊答案