已知橢圓:的左右焦點分別為,離心率為,兩焦點與上下頂點形成的菱形面積為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓交于A, B兩點,四邊形為平行四邊形,為坐標(biāo)原點,且,求直線的方程.
(Ⅰ)橢圓的方程: ……………………………………………………4分
(Ⅱ)首先,直線的斜率不存在時,,,舍去;
設(shè)直線的方程為: ,代入橢圓方程:

所以,設(shè),則
  及得:
,結(jié)合韋達(dá)定理可求出
 ,所以所求直線的方程為:  
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在平面直角坐標(biāo)系中,的兩個頂點的坐標(biāo)分別為,平面內(nèi)兩點同時滿足一下條件:①;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中的軌跡交于兩點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過原點的直線交橢圓,兩點,線段的中點為,射線交橢圓于點,交直線于點.
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求證:直線過定點;
(ii)試問點,能否關(guān)于軸對稱?若能,求出此時的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線經(jīng)過橢圓的一個焦點和一個頂點,則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知橢圓的焦點為F1,F(xiàn)2,點P為橢圓上任意一點,過F2的外角平分線的垂線,垂足為點Q,過點Q作軸的垂線,垂足為N,線段QN的中點為M,則點M的軌跡方程為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左、右焦點分別為,直線與橢圓相交于、兩點,為坐標(biāo)原點,以為直徑的圓恰好過,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分
已知定點,B是圓(C為圓心)上的動點,AB的垂直平分線與BC交于點E。
(1)求動點E的軌跡方程;
(2)設(shè)直線與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:OPQ面積的最大值及此時直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果方程x2+ky2=2表示焦點在y軸的橢圓,那么實數(shù)k的取值范圍是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點A(5,0)和⊙B:,P是⊙B上的動點,直線BP與線段AP的垂直平分線交于點Q,則點Q(x,y)所滿足的軌跡方程為 。 ▲ )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案