在極坐標(biāo)系下,已知圓C的方程為r=2cosθ,則下列各點(diǎn)中,在圓C上的是(  )

A.(1,-)        B.(1,)        

C.(,)      D.(,)

 

【答案】

A

【解析】

試題分析:將四個(gè)選項(xiàng)極坐標(biāo)分別代入及坐標(biāo)方程驗(yàn)證可知只有A項(xiàng)成立,所以點(diǎn)(1,-)在圓C上

考點(diǎn):圓的極坐標(biāo)方程

點(diǎn)評(píng):驗(yàn)證點(diǎn)是否在曲線上只需將點(diǎn)的坐標(biāo)帶入驗(yàn)證

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
π
4
)=
2
2

(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系下,已知圓C的方程為ρ=2cosθ,則下列各點(diǎn)在圓C上的是( 。
A、(1,-
π
3
)
B、(1,
π
6
)
C、(
2
4
)
D、(
2
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)二模)選修4-4:坐標(biāo)系與參數(shù)方程
 在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
π
4
)=
2
2
,
(I)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.求圓O和直線l的直角坐標(biāo)方程;
(II)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-
π
4
)=
2
2

(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系下,已知圓O:和直線,

(1)求圓O和直線的直角坐標(biāo)方程;

(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案