△ABC是邊長為2的等邊三角形,D是以A為圓心,半徑為1的圓上任意一點,如圖所示,則
BD
CD
的最大值是( 。
A、3+
3
B、3-
3
C、3-2
3
D、3+2
3
考點:向量在幾何中的應用
專題:計算題,平面向量及應用
分析:由題意,建立平面直角坐標系,設出點的坐標,從而求最大值.
解答: 解:如圖建立平面直角坐標系,
A(0,0),D(cosa,sina),B(-1,-
3
),C(1,-
3
);
BD
CD
=(cosa+1,sina+
3
)•(cosa-1,sina+
3

=cos2a-1+(sina+
3
2
=2
3
sina+3,
故當sina=1時有最大值,
BD
CD
的最大值是2
3
+3.
故選D.
點評:本題考查了平面向量的應用及學生的作圖能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件求拋物線的標準方程:
(1)焦點在x軸上,焦點到準線的距離為6;
(2)準線方程:x=-
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
3
5
,an=2-
1
an-1
(n≥2,n∈N*),數(shù)列{bn}滿足bn=
1
an-1
(n∈N*).
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求{bn}的通項公式及前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一艘船在A處測得燈塔S在它的北偏東30°的方向,之后它沿正北方向勻速航行,半個小時后到達B處,此時又測得燈塔S在它的北偏東75°,且與它相距8
2
海里,此船的航速是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知拋線C:x2=4y,過點M(0,2)任作一直線與C相交于A,B兩點,過點B作y軸的平行線與直線AO相交于點D(O為坐標原點).
(Ⅰ)求D的縱坐標y0的值;
(Ⅱ)作C的任意一條切線l(不含x軸),與直線y=2相交于點N1,與直線y=y0相交于點N2.求|MN2|2-|MN1|2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直角梯形ABCD中,E為CD邊中點,且AE⊥CD,又G,F(xiàn)分別為DA,EC的中點,將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:AE⊥平面CDE;
(2)求證:FG∥平面BCD;
(3)在線段DC上找一點R,使得平面AER⊥平面DCB,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐的三視圖如圖所示,則它的外接球的表面積為(  )
A、4πB、8π
C、12πD、16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一束光線從原點O(0,0)出發(fā),經(jīng)過直線l:8x+6y=25反射后通過點P(-4,3),則反射光線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中的內(nèi)角A、B、C所對的邊分別為a,b,c,若b=2ccosA,c=2bcosA,則△ABC的形狀為
 

查看答案和解析>>

同步練習冊答案