【題目】已知拋物線,直線傾斜角是且過拋物線的焦點(diǎn),直線被拋物線截得的線段長(zhǎng)是16,雙曲線: 的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,則直線與軸的交點(diǎn)到雙曲線的一條漸近線的距離是( )
A. 2 B. C. D. 1
【答案】D
【解析】拋物線的焦點(diǎn)為,由弦長(zhǎng)計(jì)算公式有 ,所以拋物線的標(biāo)線方程為,準(zhǔn)線方程為 ,故雙曲線的一個(gè)焦點(diǎn)坐標(biāo)為,即 ,所以 ,漸近線方程為,直線 方程為,所以點(diǎn),點(diǎn)P到雙曲線的一條漸近線的距離為 ,選D.
點(diǎn)睛: 本題主要考查了拋物線與雙曲線的簡(jiǎn)單幾何性質(zhì), 屬于中檔題. 先由直線過拋物線的焦點(diǎn),求出弦長(zhǎng),由弦長(zhǎng)求出的值,根據(jù)雙曲線中的關(guān)系求出 ,漸近線方程等,由點(diǎn)到直線距離公式求出點(diǎn)P到雙曲線的一條漸近線的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞市某高級(jí)中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限 (單位:年, )和所支出的維護(hù)費(fèi)用(單位:萬(wàn)元)廠家提供的統(tǒng)計(jì)資料如下:
使用年限 (年) | 1 | 2 | 3 | 4 | 5 |
維護(hù)費(fèi)用(萬(wàn)元) | 6 | 7 | 7.5 | 8 | 9 |
請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護(hù)費(fèi)用關(guān)于的線性回歸方程;
若規(guī)定當(dāng)維護(hù)費(fèi)用超過13.1萬(wàn)元時(shí),該批空調(diào)必須報(bào)廢,試根據(jù)(1)的結(jié)論求該批空調(diào)使用年限的最大值.
參考公式:最小二乘估計(jì)線性回歸方程中系數(shù)計(jì)算公式:
, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,平面平面, , , 分別為, , 的中點(diǎn), , .
(1)求證: 平面;
(2)若為上任一點(diǎn),證明平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出40個(gè)數(shù):1,2,4,7,11,16,…,要計(jì)算這40個(gè)數(shù)的和,如圖給出了該問題的程序框圖,那么框圖①處和執(zhí)行框②處可分別填入( )
A. ; B. ;
C. ; D. ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)已知點(diǎn)和函數(shù)圖像上動(dòng)點(diǎn),對(duì)任意,直線傾斜角都是鈍角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 和所在平面互相垂直,且, 分別為AC、DC、AD的中點(diǎn)
(1)求證: 平面BCG;
(2)求三棱錐D-BCG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形中, , ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中.
(1)證明:平面平面;
(2)若為中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax﹣2a2(x∈R).
(1)關(guān)于x的不等式f(x)<0的解集為A,且A[﹣1,2],求a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得當(dāng)x∈R時(shí), 成立.若存在給出證明,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為的正方形, 底面, 分別為的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)若,試問在線段上是否存在點(diǎn),使得二面角 的余弦值為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com