【題目】已知函數f(x)=x2﹣ax﹣2a2(x∈R).
(1)關于x的不等式f(x)<0的解集為A,且A[﹣1,2],求a的取值范圍;
(2)是否存在實數a,使得當x∈R時, 成立.若存在給出證明,若不存在說明理由.
【答案】
(1)解:若關于x的不等式f(x)<0的解集A≠Φ,則△>0,即a≠0;
當a>0時.不等式解集A為(﹣a,2a);
由題意可知: ∴a≥1;
當a<0時,不等式解集A為(2a,﹣a);
由題意可知: ∴a≤﹣2;
綜上所述:a∈(﹣∞,﹣2]∪[1,+∞);
(2)解:∵ ;
所以有: ;
解得: a=0;
證明:當a=0時,f(x)=x2 ∴f(|x|)﹣f(x)=|x|2﹣x2=0;
又∵|f(x)|﹣f(x)=|x2|﹣x2=0;
所以:當a=0時,條件成立
【解析】(1)直接利用集合與集合之間的關系,分類討論參數a寫出不等式,求出a的取值范圍;(2)由題意列出等式,得到f(﹣x)=f(x)且f(x)≥0成立,從而求出a的值.
【考點精析】解答此題的關鍵在于理解二次函數的性質的相關知識,掌握當時,拋物線開口向上,函數在上遞減,在上遞增;當時,拋物線開口向下,函數在上遞增,在上遞減.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點F的位置,并給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,直線傾斜角是且過拋物線的焦點,直線被拋物線截得的線段長是16,雙曲線: 的一個焦點在拋物線的準線上,則直線與軸的交點到雙曲線的一條漸近線的距離是( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假.
(1)對數函數都是單調函數;
(2)至少有一個整數,它既能被11整除,又能被9整除;
(3)x∈{x|x>0}, ;
(4)x0∈Z,log2x0>2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家為了鼓勵節(jié)約用水,實行階梯用水收費制度,價格參照表如表:
用水量(噸) | 單價(元/噸) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超過20噸不超過35噸的部分按3元/噸收費 |
35以上 | 4 | 超過35噸的部分按4元/噸收費 |
(1)若小明家10月份用水量為30噸,則應繳多少水費?
(2)若小明家10月份繳水費99元,則小明家10月份用水多少噸?
(3)寫出水費y與用水量x之間的函數關系式,并畫出函數的圖象.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn,點 (n∈N*)均在函數y=3x-2的圖象上.
(1)求數列{an}的通項公式;
(2)設bn=,Tn是數列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數m.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com