11.函數(shù)y=sin(3x+$\frac{π}{4}$)的圖象適當(dāng)變換就可以得到y(tǒng)=cos3x的圖象,這種變換可以是(  )
A.向右平移$\frac{π}{4}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{4}$個單位長度D.向左平移$\frac{π}{12}$個單位長度

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:法一:利用誘導(dǎo)公式:
由y=sin(3x+$\frac{π}{4}$)
=sin(3x-$\frac{π}{4}$+$\frac{π}{2}$)
=cos(3x-$\frac{π}{4}$)
=cos3(x-$\frac{π}{12}$),
向左平移$\frac{π}{12}$個單位長度,可得y=cos3x.
故選:D
法二:設(shè)函數(shù)y=sin(3x+$\frac{π}{4}$)的圖象向左平移m個單位可得到y(tǒng)=cos3x的圖象,(注意函數(shù)名不同)
即sin[3(x+m)+$\frac{π}{4}$]=sin(3x+3m+$\frac{π}{4}$),
由題意:3m+$\frac{π}{4}$=$\frac{π}{2}$,
解得:m=$\frac{π}{12}$,
故得:向左平移$\frac{π}{12}$個單位.
故選:D

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若定義在R上的函數(shù)f(x)滿足f(x)+f'(x)<1且f(0)=3,則不等式$f(x)>\frac{2}{e^x}+1$(其中e為自然對數(shù)的底數(shù))的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\sqrt{2}•tsin\frac{π}{6}\\ y=tcos\frac{7π}{4}-6\sqrt{2}\end{array}\right.$(t是參數(shù))
以原點(diǎn)O為極點(diǎn),Ox為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=4cos({θ+\frac{π}{4}})$.
(1)求直線l的普通方程和圓心C的直角坐標(biāo);
(2)求圓C上的點(diǎn)到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=ln$\frac{x}{2}$+$\frac{1}{2}$,g(x)=ex-2,對?m∈R,?n∈(0,+∞)使得g(m)=f (n)成立,則n-m的最小值為( 。
A.-ln 2B.ln 2C.2$\sqrt{e}$-3D.e2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C 的參數(shù)方程為$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)O 為極點(diǎn),x 軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C 的極坐標(biāo)方程;
(Ⅱ)設(shè)l1:θ=$\frac{π}{6}$,l2:θ=$\frac{π}{3}$,若l 1、l2與曲線C 相交于異于原點(diǎn)的兩點(diǎn) A、B,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=lnx-x+1+a,g(x)=x2ex(e為自然對數(shù)的底數(shù)),若對任意的x1∈[$\frac{1}{e}$,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是$\frac{1}{e}$≤a≤e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在三棱柱ABCA1B1C1中,側(cè)面ABB1A1為矩形,AB=3,AA1=3$\sqrt{2}$,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1
(Ⅰ)證明:BC⊥AB1;
(Ⅱ)若OC=OA,求二面角A1-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=\frac{x}{{{x^2}+a}}$的圖象不可能是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知正方形ABCD的邊長為2,E為CD的中點(diǎn),則$\overrightarrow{AE}•\overrightarrow{CB}$=( 。
A.-4B.-3C.4D.$2\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案