分析 (Ⅰ)將C參數(shù)方程化為普通方程,利用$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$代入,可得曲線C 的極坐標(biāo)方程.
(Ⅱ)法一:利用參數(shù)的幾何意義,求|OB|,|OA|,∠AOB=60°,即可求△AOB的面積,
法二:在平面直角坐標(biāo)系中,根據(jù)l1:θ=$\frac{π}{6}$,l2:θ=$\frac{π}{3}$,求出方程與圓C求解交點A和B,|OB|,|OA|,∠AOB=60°,即可求△AOB的面積,
解答 解:(Ⅰ)∵曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α為參數(shù)),利用sin2α+cos2α=1,
$\sqrt{5}sinα=x-2$,$\sqrt{5}cosα$=y-1,可得:(x-2)2+(y-1)2=5.
∴曲線C的普通方程為(x-2)2+(y-1)2=5.
將$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$代入并化簡得:ρ=4cosθ+2sinθ
即曲線C的極坐標(biāo)方程為ρ=4cosθ+2sinθ.
(Ⅱ)解法一:在極坐標(biāo)系中,C:ρ=4cosθ+2sinθ
∴由$\left\{{\begin{array}{l}{θ=\frac{π}{6}}\\{ρ=4cosθ+2sinθ}\end{array}}\right.$得到$|{OA}|=2\sqrt{3}+1$;
同理$|{OB}|=2+\sqrt{3}$.
又∵$∠AOB=\frac{π}{6}$
∴${S_{△AOB}}=\frac{1}{2}|{OA}|•|{OB}|sin∠AOB=\frac{{8+5\sqrt{3}}}{4}$.
即△AOB的面積為$\frac{{8+5\sqrt{3}}}{4}$.…(10分)
解法二:在平面直角坐標(biāo)系中,C:(x-2)2+(y-1)2=5
l1:θ=$\frac{π}{6}$,l2:θ=$\frac{π}{3}$,可得${l_1}:y=\frac{{\sqrt{3}}}{3}x$,${l_2}:y=\sqrt{3}x$
∴由$\left\{{\begin{array}{l}{y=\frac{{\sqrt{3}}}{3}x}\\{{{({x-2})}^2}+{{({y-1})}^2}=5}\end{array}}\right.$得$A({\frac{{6+\sqrt{3}}}{2},\frac{{2\sqrt{3}+1}}{2}})$
∴$|{OA}|=2\sqrt{3}+1$
同理$B({\frac{{2+\sqrt{3}}}{2},\frac{{2\sqrt{3}+3}}{2}})$
∴$|{OA}|=2\sqrt{3}+1$,$|{OB}|=2+\sqrt{3}$
又∵$∠AOB=\frac{π}{6}$
∴${S_{△AOB}}=\frac{1}{2}|{OA}|•|{OB}|sin∠AOB=\frac{{8+5\sqrt{3}}}{4}$
即△AOB的面積為$\frac{{8+5\sqrt{3}}}{4}$.
點評 本題主要考查了參數(shù)方程,極坐標(biāo)方程與普通方程的換算.參數(shù)方程的幾何意義的運用.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否愿意提供志愿者服務(wù) 性別 | 愿意 | 不愿意 |
男生 | 25 | 5 |
女生 | 15 | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{4}$個單位長度 | B. | 向右平移$\frac{π}{12}$個單位長度 | ||
C. | 向左平移$\frac{π}{4}$個單位長度 | D. | 向左平移$\frac{π}{12}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com