精英家教網 > 高中數學 > 題目詳情

設函數f(x)=數學公式的反函數為f-1(x),且數學公式,則f(a+7)=________.

-2
分析:先根據求出a的值,然后判定a+7的大小選擇相應的解析式代入,求出函數值即可.
解答:∵,
∴f(a)=
當a>4時,-log3(a+2)=,無解
當a≤4時,,解得a=1
∴f(a+7)=f(8)=-log39=-2
故答案為:-2
點評:本題主要考查了函數與反函數之間的關系,以及分段函數的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=
px+1
x+1
,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設函數f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設函數f(x)=3x+4,求集合A和B,并分析能否根據(1)(2)中的結論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=
3x+ax+b
圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A、B,點M為函數圖象上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點的有奇數個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江西省百所重點高中高三(上)段考數學試卷(理科)(解析版) 題型:解答題

對于函數f(x),若f(x)=x,則稱x為f(x)的:“不動點”;若f[f(x)]=x,則稱x為f(x)的“穩(wěn)定點”.函數f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設函數f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設函數f(x)=3x+4,求集合A和B,并分析能否根據(1)(2)中的結論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數學 來源:2011年上海市黃浦區(qū)大境中學高三5月模擬數學試卷(理科)(解析版) 題型:解答題

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=,若由函數f(x)確定的數列{an}的自反數列為{bn},求an;
(2)已知正整數列{cn}的前項和sn=(cn+).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案