設F1、F2分別是橢圓+=1的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則|PM|+|PF1|的最大值為_______
15
解析試題分析:因為設F1、F2分別是橢圓+=1的左、右焦點,由于a=5,b=4,那么c=3,根據(jù)第一可知焦點的坐標為(3,0)(-3,0),而點M的坐標為(6,4)的坐標在橢圓外,那么連接MF則此時距離和最小,但是要使得最大,則所求的轉換為|PM|+2a-|PF2|=2a+|PM|-|PF2|,可知連接左焦點和點M的線段的連線即為|PM|-|PF2|的最大值為5,那么|PM|+|PF1|的最大值為5+2a=15.故答案為15.
考點:本題主要考查了橢圓的應用以及橢圓中線段的最值問題,求解時要充分利用橢圓的定義可使得解答簡潔.
點評:解決該試題的關鍵是將求解線段和的最小值轉換為三點共線的特殊情況來解決,結合定義得到。
科目:高中數(shù)學 來源: 題型:填空題
若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則1<t<4; ②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓; ④若,則C表是長軸在x軸上的橢圓.
其中真命題的序號為 (把所有正確命題的序號都填上)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com