17.已知三棱錐D-ABC的四個(gè)頂點(diǎn)都在球O的表面上,若AB=3,AC=4,AB⊥AC,DB⊥平面ABC,DB=12,則球O的半徑為$\frac{13}{2}$.

分析 畫(huà)出圖形,把三棱錐擴(kuò)展為長(zhǎng)方體,三棱錐的外接球就是長(zhǎng)方體的外接球,長(zhǎng)方體的體對(duì)角線(xiàn)就是球的直徑.

解答 解:由題意畫(huà)出圖形如圖,因?yàn)槿忮FD-ABC的頂點(diǎn)都在球O的球面上,
AB=3,AC=4,AB⊥AC,DB⊥平面ABC,DB=12,
所以三棱錐擴(kuò)展為長(zhǎng)方體,長(zhǎng)方體的對(duì)角線(xiàn)的長(zhǎng)為:DC,
AB=3,AC=4,AB⊥AC,∴BC=5,
所以DC=13,
所以所求球的半徑為$\frac{13}{2}$.
故答案為:$\frac{13}{2}$.

點(diǎn)評(píng) 本題考查直線(xiàn)與平面垂直的性質(zhì),球的內(nèi)接幾何體與球的關(guān)系,考查空間想象能力,計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)a>-38,P=$\sqrt{a+41}$-$\sqrt{a+40}$,Q=$\sqrt{a+39}$-$\sqrt{a+38}$,則P與Q的大小關(guān)系為P<Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知圓C過(guò)定點(diǎn)A(0,p),圓心C在拋物線(xiàn)x2=2py(p>0)上,圓C與x軸交于M、N兩點(diǎn),當(dāng)C在拋物線(xiàn)頂點(diǎn)時(shí),圓C與拋物線(xiàn)的準(zhǔn)線(xiàn)交于G、H,弦GH的長(zhǎng)為2$\sqrt{3}$.
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)圓心C在拋物線(xiàn)上運(yùn)動(dòng)時(shí).
①|(zhì)MN|是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
②記|AM|=m,|AN|=n.求$\frac{m}{n}$+$\frac{n}{m}$的最大值,并求出此時(shí)圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x、y滿(mǎn)足線(xiàn)性約束條件:$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x-2y的最小值是( 。
A.6B.-6C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知拋物線(xiàn)y2=2px(p>0),若定點(diǎn)(2p,1)與直線(xiàn)kx+y+2k+2=0距離的最大值是5,則p的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)cos(x-$\frac{π}{4}$).
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱(chēng)軸方程.
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.等差數(shù)列{an}的前n項(xiàng)和記為Sn,若a5=10,S7=49,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{({3n-2})•{a_n}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.今年NBA總決賽在勇士和騎士隊(duì)之間進(jìn)行.按照規(guī)則,要想獲得總冠軍的隊(duì)伍需要在七場(chǎng)比賽中獲勝四場(chǎng)(如果提前贏(yíng)得比賽,則剩下的就不用繼續(xù);同時(shí)要注意的是,籃球比賽沒(méi)有平局,每場(chǎng)必須分出勝負(fù)).假設(shè)勇士隊(duì)每場(chǎng)比賽獲勝的概率是$\frac{1}{2}$,且各場(chǎng)比賽獲勝與否彼此獨(dú)立,用X表示勇士隊(duì)在整個(gè)比賽中的獲勝場(chǎng)數(shù),試回答以下問(wèn)題:
(1)計(jì)算勇士隊(duì)至少獲勝一場(chǎng)的概率;
(2)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為$ρcos(θ-\frac{π}{4})=\sqrt{2}$.
(Ⅰ)求圓C的普通方程和直線(xiàn)l的直角坐標(biāo)方程;
(Ⅱ)設(shè)M是直線(xiàn)l上任意一點(diǎn),過(guò)M做圓C切線(xiàn),切點(diǎn)為A、B,求四邊形AMBC面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案