分析 (1)根據(jù)拋物線的定義,結合圓的弦長公式建立方程進行求解即可.
(2)①根據(jù)直線和圓相交的弦長公式進行計算即可.
②求出相應的長度,結合基本不等式進行求解.
解答 解:(1)拋物線的準線為y=-$\frac{p}{2}$,當C在拋物線頂點時,圓C的半徑為p,圓C的方程為x2+y2=p2.
∴弦長l=2$\sqrt{{p}^{2}-(\frac{p}{2})^{2}}$=2$•\sqrt{\frac{3}{4}{p}^{2}}$=$\sqrt{3}$p=2$\sqrt{3}$.
∴p=2,
∴拋物線的方程為x2=4y.
(2)①記C(a,$\frac{{a}^{2}}{4}$),圓C的半徑r=$\sqrt{{a}^{2}+(\frac{{a}^{2}}{4}-2)^{2}}$.
由垂徑定理知|MN|=2$\sqrt{{r}^{2}-(\frac{{a}^{2}}{4})^{2}}$=2$\sqrt{{a}^{2}+(\frac{{a}^{2}}{4})^{2}-4•\frac{{a}^{2}}{4}+4-(\frac{{a}^{2}}{4})^{2}}$=2×2=4.
∴|MN|為定值4.
②由①知,M(a-2,0),N(a+2,0),
∴|AM|=$\sqrt{(a-2)^{2}+{2}^{2}}$=$\sqrt{{a}^{2}-4a+8}$,
|AN|=$\sqrt{(a+2)^{2}+{2}^{2}}$=$\sqrt{{a}^{2}+4a+8}$.
∴$\frac{m}{n}$+$\frac{n}{m}$=$\frac{{m}^{2}+{n}^{2}}{mn}$=$\frac{2{a}^{2}+16}{\sqrt{{a}^{4}+64}}$=$\frac{2\sqrt{({a}^{2}+8)^{2}}}{\sqrt{{a}^{4}+64}}$=2•$\frac{\sqrt{{a}^{4}+16{a}^{2}+64}}{\sqrt{{a}^{4}+64}}$=2$•\sqrt{1+\frac{16{a}^{2}}{{a}^{4}+64}}$,
當a=0時,$\frac{m}{n}$+$\frac{n}{m}$=2.
當a≠0時,$\frac{m}{n}$+$\frac{n}{m}$=2•$\sqrt{1+\frac{16{a}^{2}}{{a}^{4}+64}}$=2$•\sqrt{1+\frac{16}{{a}^{2}+\frac{64}{{a}^{2}}}}$≤2$•\sqrt{1+\frac{16}{2×8}}$=2$\sqrt{2}$.
當且僅當a=±2$\sqrt{2}$時,$\frac{m}{n}$+$\frac{n}{m}$有最大值為2$\sqrt{2}$,
此時圓C的方程為(x±2$\sqrt{2}$)2+(y-2)2=8.
點評 本題主要考查拋物線性質的應用以及直線和圓的位置關系的應用,根據(jù)相應的弦長公式以及基本不等式的性質進行轉化求解是解決本題的關鍵.綜合性較強,有一定的難度.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)的最大值為2$\sqrt{3}$,最小值為-2$\sqrt{3}$ | |
B. | x=$\frac{2π}{3}$是函數(shù)的一條對稱軸 | |
C. | 函數(shù)的增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z | |
D. | 將y=g(x-$\frac{π}{6}$)+g(x)圖象向左平移$\frac{π}{3}$個單位得到函數(shù)y=$\sqrt{3}$sin2x的圖象 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | x2-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com