【題目】已知點是橢圓的左,右焦點,橢圓上一點滿足軸,.

1)求橢圓的標準方程;

2)過的直線交橢圓兩點,當的內切圓面積最大時,求直線的方程.

【答案】1;(2.

【解析】

1)由軸,結合勾股定理可得,從而可求出,則可知,結合,可求出,即可求出橢圓的標準方程.

2)設,,與橢圓方程聯(lián)立,可得,從而可用 表示出,用內切圓半徑表示出,即可知,結合基本不等式,可求出當半徑取最大時, 的值,從而可求出直線的方程.

解:(1)因為軸,所以,則

,,解得,,

由橢圓的定義知, ,即

橢圓的標準方程為.

2)要使的內切圓的面積最大,需且僅需其的內切圓的半徑最大.

因為,,設,,易知,直線l的斜率不為0,

設直線,聯(lián)立,整理得,

;

所以

,

,即,;

當且僅當,即時等號成立,此時內切圓半徑取最大值為

直線l的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形中,角,的對邊分別為,;.

(1)求角的大小;

(2)在銳角三角形中,角,,的對邊分別為,,若,,,求三角形的內角平分線的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年以來精準扶貧政策的落實,使我國扶貧工作有了新進展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于的概率;

(2)設年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關情況,并預測年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

(的值保留到小數(shù)點后三位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】疫情期間,一同學通過網(wǎng)絡平臺聽網(wǎng)課,在家堅持學習.某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學,語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準備在上午下午的課程中各任選一節(jié)進行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學科(政治、歷史、地理)課程的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019新型冠狀病毒(2019nCoV)于2020112日被世界衛(wèi)生組織命名.冠狀病毒是一個大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.某醫(yī)院對病患及家屬是否帶口罩進行了調查,統(tǒng)計人數(shù)得到如下列聯(lián)表:

戴口罩

未戴口罩

總計

未感染

30

10

40

感染

4

6

10

總計

34

16

50

1)根據(jù)上表,判斷是否有95%的把握認為未感染與戴口罩有關;

2)從上述感染者中隨機抽取3人,記未戴口罩的人數(shù)為,求的分布列和數(shù)學期望.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD的底面是梯形.BCAD,ABBCCD1AD2,

(Ⅰ)證明;ACBP

(Ⅱ)求直線AD與平面APC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為了更好地應對新型冠狀病毒肺炎疫情,對單位的職工進行防疫知識培訓,所有職工選擇網(wǎng)絡在線培訓和線下培訓中的一種方案進行培訓.隨機抽取了140人的培訓成績,統(tǒng)計發(fā)現(xiàn)樣本中40個成績來自線下培訓職工,其余來自在線培訓的職工,并得到如下統(tǒng)計圖表:

線下培訓莖葉圖在線培訓直方圖

1)得分90分及以上為成績優(yōu)秀,完成下邊列聯(lián)表,并判斷是否有的把握認為成績優(yōu)秀與培訓方式有關?

優(yōu)秀

非優(yōu)秀

合計

線下培訓

在線培訓

合計

2)成績低于60分為不合格.在樣本的不合格個體中隨機再抽取3個,其中在線培訓個數(shù)是,求分布列與數(shù)學期望.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的參數(shù)方程;

(2)若,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求的最小值;

2)若函數(shù)上存在極值點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案