已知焦點在軸上的橢圓的離心率是,則的值為 (  )

A.           B.              C.            D.

 

【答案】

C

【解析】

試題分析:根據(jù)題意,由于焦點在軸上的橢圓的離心率是,故選C.

考點:橢圓的離心率

點評:解決的關鍵是利用橢圓的性質(zhì)來得到a,c的比值關系,然后借助于其方程得到a的值,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年廈門外國語學校模擬)(12分)

已知焦點在軸上的橢圓是它的兩個焦點.

(Ⅰ)若橢圓上存在一點P,使得試求的取值范圍;

(Ⅱ)若橢圓的離心率為,經(jīng)過右焦點的直線與橢圓相交于A、B兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省安慶市高三模擬考試(三模)理科數(shù)學試卷(解析版) 題型:解答題

已知焦點在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點的坐標為,設直線(其中為整數(shù)).

(1)試求橢圓和雙曲線的標準方程;

(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西南昌八一、洪都、麻丘中學高二上期中數(shù)學試卷(解析版) 題型:選擇題

已知焦點在軸上的橢圓的離心率為,它的長軸長等于圓的半徑,則橢圓的標準方程是(   )

A.    B.     C.         D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省高三下學期2月月考理科數(shù)學試卷 題型:解答題

(本題滿分15分)已知焦點在軸上的橢圓過點,且離心率為,為橢圓的左頂點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知過點的直線與橢圓交于,兩點.

(。┤糁本垂直于軸,求的大小;

(ⅱ)若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年黑龍江省高二下學期期中考試數(shù)學(文) 題型:選擇題

1.         已知焦點在軸上的橢圓的兩個焦點分別為, 且,弦過焦點,則的周長為

A.            B.               C.           D.

 

查看答案和解析>>

同步練習冊答案