(2012•黃州區(qū)模擬)設(shè)實數(shù)x,y滿足約束條件
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標(biāo)函數(shù)z=
x
a
+
y
b
(a>0,b>0)的最大值為9,則d=
4a+b
的最小值為
4
3
4
3
分析:先畫出可行域,數(shù)形結(jié)合求出目標(biāo)函數(shù)的最大值,得到a,b的關(guān)系,兩式相乘湊成利用基本不等式的條件,利用基本不等式求最值.
解答:解:不等式表示的平面區(qū)域如圖所示陰影部分,
當(dāng)直線z=
x
a
+
y
b
(a>0,b>0)過直線2x-y+2=0與直線8x-y-4=0的交點(1,4)時,
目標(biāo)函數(shù)z=
x
a
+
y
b
(a>0,b>0)取得最大值9,
1
a
+
4
b
=9
,
又4a+b=(4a+b)×
1
9
×(
1
a
+
4
b
)=
1
9
(8+
b
a
+
16a
b
)≥
1
9
(8+8)=
16
9

則d=
4a+b
的最小值為
4
3

故答案為:
4
3
點評:本題綜合地考查了線性規(guī)劃問題和由基本不等式求函數(shù)的最值問題.要求能準(zhǔn)確地畫出不等式表示的平面區(qū)域,并且能夠求得目標(biāo)函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),設(shè)函數(shù)f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c-
3
a,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)如圖,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中點.
(Ⅰ)求證:A1B∥平面ADC1;
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)試問線段A1B1上是否存在點E,使AE與DC1成60°角?若存在,確定E點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知某幾何體的三視圖如圖,則該幾何體的表面積為
3+
2
+
3
3+
2
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知函數(shù)f(x)=
|log
x
4
-1|-2,|x|≤1
1
1+x
1
3
,|x|>1
,則f(f(27))=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)如圖是二次函數(shù)f(x)=x2-bx+a的部分圖象,則函數(shù)g(x)=2lnx+f(x)在點(b,g(b))處切線的斜率的最小值是(  )

查看答案和解析>>

同步練習(xí)冊答案