10.已知全集A={1,3,5,7},B={x|x<3},則A∩B=(  )
A.{1}B.{3}C.{1,3}D.{5,7}

分析 由A與B,求出兩集合的交集即可.

解答 解:∵全集A={1,3,5,7},B={x|x<3},
∴A∩B={1},
故選:A.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在直三棱柱ABC-A1B1C1中,AC=BC=2,AB=2$\sqrt{2}$,AA1=5,D是線段AB的中點(diǎn),記$\overrightarrow{AF}$=λ$\overrightarrow{A{A}_{1}}$(0<λ<1).
(1)求λ為何值時,B1F⊥BC1;(2)當(dāng)λ=$\frac{2}{5}$時,求B1F和平面DFC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+bx-alnx.
(1)當(dāng)函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程為y+5x-5=0,求函數(shù)f(x)的解析式;
(2)在(1)的條件下,若x0是函數(shù)f(x)的零點(diǎn),且x0∈(n,n+1),n∈N*,求n的值;
(3)當(dāng)a=1時,函數(shù)f(x)有兩個零點(diǎn)x1,x2(x1<x2),且x0=$\frac{{{x_1}+{x_2}}}{2}$,求證:f'(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=2cos(2x+φ),滿足f(x+φ)=f(x+4φ),則f(x)在[${\frac{π}{2}$,π]上的單調(diào)遞增區(qū)間為( 。
A.[${\frac{π}{2}$,$\frac{2π}{3}}$]B.[${\frac{π}{2}$,$\frac{5π}{6}}$]C.[${\frac{2π}{3}$,$\frac{5π}{6}}$]D.[${\frac{5π}{6}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知在多面體ABCDEF中,ABCD為正方形,EF∥平面ABCD,M為FC的中點(diǎn),AB=2,EF到平面ABCD的距離為2,F(xiàn)C=2.
(1)證明:AF∥平面MBD;
(2)若EF=1,求VF-MBE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x).
(1)若關(guān)于x的不等式f(x)-m≥0在[0,e-1](e為自然對數(shù)的底數(shù)) 上有實數(shù)解,求實數(shù)m的取值范圍;
(2)設(shè)g(x)=f(x)-x2-1,若關(guān)于x的方程g(x)=p至少有一個解,求p的 最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{x^2}{2}$+mlnx,g(x)=$\frac{x^2}{2}$-x,p(x)=mx2
(1)若函數(shù)f(x)與g(x)在公共定義域上具有相同的單調(diào)性,求實數(shù)m的值;
(2)若函數(shù)m(x),m1(x),m2(x)在公共定義域內(nèi)滿足m1(x)>m(x)>m2(x)恒成立,則稱m(x)為從m1(x)至m2(x)的“過渡函數(shù)”;
①在(1)的條件下,探究從f(x)至g(x)是否存在無窮多個“過渡函數(shù)”,并說明理由;
②是否存在非零實數(shù)m,使得f(x)是從p(x)至g(x)的“過渡函數(shù)”.若存在,求出非零實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a是任意實數(shù),則關(guān)于x的不等式(a2-a+2016)x2<(a2-a+2016)2x+3的解為-1<x<3.(用x的不等式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AE=1,AB=2,CD=3,E,F(xiàn)分別為AB,CD上的點(diǎn),以EF為軸將正方形ADFE向上翻折,使平面ADFE與平面BEFC垂直如圖2.
(1)求證:平面BDF⊥平面BCD;
(2)求多面體AEBDFC的體積.

查看答案和解析>>

同步練習(xí)冊答案