(本小題滿分12分)
已知定義在區(qū)間上的函數(shù)為奇函數(shù)且
(1)求實數(shù)m,n的值;
(2)求證:函數(shù)上是增函數(shù)。
(3)若恒成立,求t的最小值。

解:(1)對應(yīng)的函數(shù)為,對應(yīng)的函數(shù)為   ………2分
(2)                           …………3分                      
理由如下:
,則為函數(shù)的零點。

方程的兩個零點
因此整數(shù)                        …………7分         
(3)從圖像上可以看出,當(dāng)時, 
當(dāng)時, 
 …………12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足,且有唯
一實數(shù)解。
(1)求的表達式 ;
(2)記,且,求數(shù)列的通項公式。
(3)記 ,數(shù)列{}的前 項和為 ,是否存在k∈N*,使得
對任意n∈N*恒成立?若存在,求出k的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
函數(shù)f(x)=x2-2x+2在閉區(qū)間[t,t+1](t∈R)上的最小值為g(t).
(1)試寫出g(t)的表達式;
(2)作g(t)的圖象并寫出g(t)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)的奇函數(shù),且單調(diào)遞減,解關(guān)于的不等式,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某民營企業(yè)生產(chǎn)兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資成正比,其關(guān)系如圖甲,產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙(注:利潤與投資單位:萬元)

(Ⅰ)分別將兩種產(chǎn)品的利潤表示為投資(萬元)的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)已籌集到10萬元資金,并全部投入兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ)當(dāng)  時,求函數(shù)  的最小值;
(Ⅱ)當(dāng)  時,討論函數(shù)  的單調(diào)性;
(Ⅲ)求證:當(dāng) 時,對任意的 ,且,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+2x.
(1)求函數(shù)g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

溫州某私營公司生產(chǎn)一種產(chǎn)品,根據(jù)歷年的情況可知,生產(chǎn)該產(chǎn)品每天的固定成本為14000元,每生產(chǎn)一件該產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價與產(chǎn)量之間的關(guān)系式為

(Ⅰ)寫出該公司的日銷售利潤與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
設(shè)是定義在上的函數(shù),用分點

將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式)恒成立,則稱上的有界變差函數(shù).
(1)函數(shù)上是否為有界變差函數(shù)?請說明理由;
(2)設(shè)函數(shù)上的單調(diào)遞減函數(shù),證明:上的有界變差函數(shù);
(3)若定義在上的函數(shù)滿足:存在常數(shù),使得對于任意的、 時,.證明:上的有界變差函數(shù).

查看答案和解析>>

同步練習(xí)冊答案