已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,)在橢圓C上.

(I)求橢圓C的方程;
(II)如圖,動直線與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且,,四邊形面積S的求最大值.
(I);(II).

試題分析:(I)設出橢圓的方程,根據(jù)已知條件列方程組,求出的值,然后寫出橢圓的標準方程;(II)根據(jù)動直線與橢圓的交點個數(shù),聯(lián)立方程組求的關系式,再由點到直線的距離公式求得的代數(shù)式,因為四邊形是直角梯形,根據(jù)邊的關系求得高的代數(shù)式,由梯形的面積公式表示出面積,利用等量代換,化簡的解析式,由函數(shù)的單調性與導數(shù)的關系判斷函數(shù)的單調性,根據(jù)單調性求最值.
試題解析:(I)設橢圓的方程為,
由已知可得   ,                            3分
解得,
∴橢圓的方程為.                   5分
(II)由,得         6分
由直線與橢圓僅有一個公共點知,,
化簡得.      7分
由點到直線的距離公式,可設
,                 8分

,
.
∴四邊形面積.             10分                      

,
時,,∴上為減函數(shù),
,∴當時,
所以四邊形的面積的最大值為.                    12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,以F1,F2為焦點的橢圓C過點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設點,過點F2作直線與橢圓C交于A,B兩點,且,若的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

點P是橢圓外的任意一點,過點P的直線PA、PB分別與橢圓相切于A、B兩點。
(1)若點P的坐標為,求直線的方程。
(2)設橢圓的左焦點為F,請問:當點P運動時,是否總是相等?若是,請給出證明。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓上的一點到橢圓一個焦點的距離為,則到另一焦點距離為    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則的值為(   )
A.8B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點作一直線與橢圓相交于A、B兩點,若點恰好為弦的中點,則所在直線的方程為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓C:的左右焦點分別為F1,F2,P為橢圓上異于端點的任意的點,PF1,PF2的中點分別為M,N,O為坐標原點,四邊形OMPN的周長為2,則△的周長是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的離心率為,頂點與橢圓的焦點相同,那么雙曲線的焦點坐標為_____;漸近線方程為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,以O為圓心,短半軸長為半徑作圓O,過橢圓的長軸的一端點P作圓O的兩條切線,切點為A、B,若四邊形PAOB為正方形,則橢圓的離心率為(  )

A.                  B.                C.            D.

查看答案和解析>>

同步練習冊答案