1.已知數(shù)列{an}的前n項和Sn=n2+2n,數(shù)列{bn}滿足3nbn+1=(n+1)an+1-nan,且b1=3.
(1)求an,bn
(2)若Tn為數(shù)列{bn}的前n項和,求Tn,并求滿足Tn<7時n的最大值..

分析 (1)通過當n≥2時利用an=Sn-Sn-1,進而計算可得結(jié)論;
(2)通過(1)利用錯位相減法計算可知Tn=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$,問題轉(zhuǎn)化為求滿足$\frac{4n+5}{{3}^{n-1}}$>1的n的最大值,進而計算可得結(jié)論.

解答 解:(1)∵Sn=n2+2n,
∴當n≥2時,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,
又∵a1=1+2=3滿足上式,
∴an=2n+1,
∵3nbn+1=(n+1)an+1-nan,
∴bn+1=$\frac{1}{{3}^{n}}$[(n+1)an+1-nan]=$\frac{1}{{3}^{n}}$[(n+1)(2n+3)-n(2n+1)]=(4n+3)•$\frac{1}{{3}^{n}}$,
又∵b1=3滿足上式,
∴bn=(4n-1)•$\frac{1}{{3}^{n-1}}$;
(2)由(1)可知,Tn=3•1+7•$\frac{1}{3}$+11•$\frac{1}{{3}^{2}}$+…+(4n-1)•$\frac{1}{{3}^{n-1}}$,
$\frac{1}{3}$Tn=3•$\frac{1}{3}$+7•$\frac{1}{{3}^{2}}$+…+(4n-5)•$\frac{1}{{3}^{n-1}}$+(4n-1)•$\frac{1}{{3}^{n}}$,
錯位相減得:$\frac{2}{3}$Tn=3+4($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)-(4n-1)•$\frac{1}{{3}^{n}}$,
∴Tn=$\frac{3}{2}$[3+4($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n-1}}$)-(4n-1)•$\frac{1}{{3}^{n}}$]
=$\frac{3}{2}$[3+4•$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-(4n-1)•$\frac{1}{{3}^{n}}$]
=$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$,
∵Tn<7,
∴$\frac{15}{2}$-$\frac{1}{2}$•$\frac{4n+5}{{3}^{n-1}}$<7,即$\frac{4n+5}{{3}^{n-1}}$>1,
記f(x)=$\frac{4x+5}{{3}^{x-1}}$,則f′(x)=$\frac{4•{3}^{x-1}-ln3•(4x+5)•{3}^{x-1}}{{3}^{2(x-1)}}$,
顯然,當x≥1時,f′(x)<0,即f(x)在區(qū)間[1,+∞)上單調(diào)遞減,
又∵f(3)=$\frac{17}{9}$,f(4)=$\frac{7}{9}$,
∴滿足Tn<7時n的最大值為3.

點評 本題考查數(shù)列的通項及前n項和,考查錯位相減法,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.平行四邊形ABCD中,$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BD}=(-4,2)$,則該四邊形的面積為(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{a}}}({x^2}-4x+13)$,則函數(shù)g(x)的最小值為( 。
A.2log23B.2C.3D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=4x2-4ax+a2-2a+2.
(1)若函數(shù)f(x)在區(qū)間[0,2]上的最大值記為g(a),求g(a)的解析式;
(2)若函數(shù)f(x)在區(qū)間[0,2]上的最小值為3,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.偶函數(shù)f(x)、奇函數(shù)g(x)的圖象分別如圖①、②所示,若方程:f(f(x))=0,f(g(x))=0,g(g(x))=2,g(f(x))=2的實數(shù)根的個數(shù)分別為a、b、c、d,則a+b+c+d=( 。
A.16B.18C.20D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集U={x∈N+|x<9},(∁UA)∩B={1,6},A∩(∁UB)={2,3},∁U(A∪B)={5,7,8},則B=(  )
A.{2,3,4}B.{1,4,6}C.{4,5,7,8}D.{1,2,3,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為e.直線l:y=ex+a與x軸,y軸分別交于A,B兩點,M是直線l與橢圓C的一個公共點,若$\overrightarrow{AM}$=e$\overrightarrow{AB}$,則該橢圓的離心率e=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出下面幾種說法:
①相等向量的坐標相同;
②平面上一個向量對應(yīng)于平面上唯一的坐標;
③一個坐標對應(yīng)于唯一的一個向量;
④平面上一個點與以原點為始點,該點為終點的向量一一對應(yīng).
其中正確說法的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=$\sqrt{3}$cos2x+sin2x的最大值和最小正周期分別是π;2.

查看答案和解析>>

同步練習(xí)冊答案