【題目】已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a﹣3<x<a+3}.
(1)求A∩UB;
(2)若M∪UB=R,求實數(shù)a的取值范圍.
【答案】
(1)解:∵全集U=R,集合A={x|4≤2x<128={x|22≤2x<27}={x|2≤x<7},B={x|1<x≤6},
∴UB={x|x≤1或x>6},
則A∩UB={x|6<x<7};
(2)解:∵UB={x|x≤1或x>6},M={x|a﹣3<x<a+3},且M∪UB=R,
∴ ,
解得:3<a≤4,
則實數(shù)a的范圍是{a|3<a≤4}
【解析】(1)求出A中不等式的解集確定出A,找出A與B補集的交集即可;(2)根據(jù)M與B的補集并集為R,確定出a的范圍即可.
【考點精析】本題主要考查了交、并、補集的混合運算的相關(guān)知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且 .
(1)求m的值;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明;
(3)求函數(shù)f(x)在區(qū)間[﹣5,﹣1]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是( )
A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油
D.甲車以80千米/小時的速度行駛1小時,消耗10升汽油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax﹣(m﹣2)a﹣x (a>0且a≠1)是定義域為R的奇函數(shù).
(1)求m的值;
(2)若f(1)<0,試判斷y=f(x)的單調(diào)性,并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范圍;
(3)若f(1)= ,g(x)=a2x+a﹣2x﹣2f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市積極倡導(dǎo)學(xué)生參與綠色環(huán);顒,其中代號為“環(huán)保衛(wèi)士—12369”的綠色環(huán);顒有〗M對2014年1月—2014年12月(一年)內(nèi)空氣質(zhì)量指數(shù)進行監(jiān)測,下表是在這一年隨機抽取的100天的統(tǒng)計結(jié)果:
指數(shù)API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)若某市某企業(yè)每天由空氣污染造成的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)(記為)的關(guān)系為:,在這一年內(nèi)隨機抽取一天,估計該天經(jīng)濟損失元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季節(jié),其中有8天為重度污染,
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季節(jié) | |||
合計 | 100 |
下面臨界值表供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x (單位:尾/立方米)的函數(shù).當x不超過4尾/立方米時,v的值為2千克/年;當4<x≤20時,v是x的一次函數(shù),當x達到20尾/立方米時,因缺氧等原因,v的值為0千克/年.
(1)當0<x≤20時,求v關(guān)于x的函數(shù)表達式;
(2)當養(yǎng)殖密度x為多大時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市每年中考都要舉行實驗操作考試和體能測試,初三(1)班共有30名學(xué)生,如圖表格為該班學(xué)生的這兩項成績,表中實驗操作考試和體能測試都為優(yōu)秀的學(xué)生人數(shù)為6人.由于部分數(shù)據(jù)丟失,只知道從這班30人中隨機抽取一個,實驗操作成績合格,且體能測試成績合格或合格以上的概率是.
實驗操作 | |||||
不合格 | 合格 | 良好 | 優(yōu)秀 | ||
體能測試 | 不合格 | 0 | 1 | 1 | 1 |
合格 | 0 | 2 | 1 | ||
良好 | 1 | 2 | 4 | ||
優(yōu)秀 | 1 | 1 | 3 | 6 |
(Ⅰ)試確定, 的值;
(Ⅱ)從30人中任意抽取3人,設(shè)實驗操作考試和體能測試成績都是良好或優(yōu)秀的學(xué)生人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標志性建筑,某班同學(xué)準備測量觀光塔的高度(單位:米),如圖所示,垂直放置的標桿的高度米,已知, .
(1)該班同學(xué)測得一組數(shù)據(jù): ,請據(jù)此算出的值;
(2)該班同學(xué)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當調(diào)整標桿到觀光塔的距離(單位:米),使與的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時, 的值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),
(1)求實數(shù)a的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x﹣b)+f(﹣2x+1)=0有實數(shù)根,求實數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com