若函數(shù)f(x)=|4-x2|的定義域為[a,b],值域為[0,2],定義區(qū)間[a,b]的長度為b-a,則區(qū)間[a,b]長度的最小值為
 
分析:已知f(x)的值域問題,可通過圖象觀察定義域的情況,帶絕對值的函數(shù)的圖象問題,可通過去絕對值討論作圖.
解答:精英家教網解:f(x)=0時,x=-2或2,f(x)=2時,x=
2
,-
2
,
6
,-
6
,
如圖,區(qū)間[a,b]長度的最小值為
6
-2

故答案為:
6
-2
點評:本題考查函數(shù)的值域問題,需要較強的觀察分析能力,有一定的難度.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在區(qū)間[2,+∞)內至少存在一個實數(shù)c使f(c)>0,則實數(shù)P的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=4+ax(a>0且a≠1)在[1,2]上的最大值比最小值大
a2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)f(x)=4×9-|x-2|-2(P-2)×3-|x-2|-2P2-P+1在區(qū)間[2,+∞)內至少存在一個實數(shù)c使f(c)>0,則實數(shù)P的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,f(loga x)=(x-).

(1)試證明函數(shù)y=f(x)的單調性.

(2)是否存在實數(shù)m滿足:當y=f(x)的定義域為(-1,1)時,有f(1-m)+f(1-m2)<0?若存在,求出其取值范圍;若不存在,請說明理由.

(3)若函數(shù)f(x)-4恰好在(-∞,2)上取負值,求a的值.

查看答案和解析>>

同步練習冊答案