6.已知函數(shù)f(x)滿足f(x+1)=2x+1,則f(1)等于( 。
A.3B.-3C.1D.-1

分析 利用函數(shù)性質(zhì)直接求解.

解答 解:∵函數(shù)f(x)滿足f(x+1)=2x+1,
∴f(1)=f(0+1)=2×0+1=1.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)F1、F2分別是橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的左,右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(3,3),則|PM|-|PF2|的最小值為( 。
A.5B.$\sqrt{13}$C.1D.$-\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=2sin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)有兩個(gè)相鄰的零點(diǎn):-$\frac{π}{6}$,$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)若f(α)=$\frac{2\sqrt{2}}{3}$,求cos6α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.不用計(jì)算器求下列各式的值
(1)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$
(2)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求y=log${\;}_{\frac{1}{2}}$(-x2-2x+3)的定義域、值域及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.A={x||x|<1},B={x|x>a},且A∩B=∅,則a的取值范圍a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知e是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)的定義域?yàn)镽,2f(x)•2f′(x)>2,f(0)=27${\;}^{\frac{2}{3}}$-2${\;}^{lo{{g}_{2}}{3}}$×log2$\frac{1}{8}$+2lg($\sqrt{3+\sqrt{5}}$+$\sqrt{3-\sqrt{5}}$)-11,則不等式$\frac{f(x)-1}{{e}^{ln7-x}}$>1的解集為(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4.若以原點(diǎn)為圓心、橢圓短半軸長(zhǎng)為半徑的圓與直線y=x+2相切,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知:平面α∥β,直線AB,AC分別與α,β交于點(diǎn)D,B和點(diǎn)E,C,求證:$\frac{AD}{AB}$=$\frac{AE}{AC}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案