如圖,直四棱柱ABCD—A1B1C1D1的高為3,底面是邊長(zhǎng)為4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中點(diǎn).

(1)求證:平面O1AC平面O1BD
(2)求二面角O1-BC-D的大;
(3)求點(diǎn)E到平面O1BC的距離.
(1)只需證BD⊥面O1AC即可;(2)  ;(3) 。

試題分析:(1)證明:∵ABCD-A1B1C1D1是直四棱柱,∴AA1⊥面AC,又BD?面AC,所以AA1⊥BD.      又∵ABCD是菱形,∴AC⊥BD,∵AA1∩AC=A
所以BD⊥面AA1C。                                          
即BD⊥面O1AC,又BD?面O1BD,
所以平面O1AC⊥平面O1BD. 
(2)解:過(guò)O作OH⊥BC于H,連接O1H,則∠O1HO為二面角O1-BC-D的平面角.    
在Rt△BHO中,OB=2,∠OBH=60°,∴OH=
又O1O∥A1A,∴O1O⊥OH.∴tan∠O1OH= .故二面角O1-BC-D的大小為.
(3)因?yàn)镋為AO1的中點(diǎn),所以O(shè)E//O1C,所以E到面O1BC的距離等于O到面O1BC的距離,根據(jù)等積法即可求出點(diǎn)E到平面O1BC的距離為。
點(diǎn)評(píng):本題以直四棱柱為載體,考查面面垂直,考查面面角,解題的關(guān)鍵是利用面面垂直的判定,正確作出面面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點(diǎn).

(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為,求sin的最大值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,已知S是正三角形ABC所在平面外的一點(diǎn),且SA=SB=SC,SG為△SAB上的高,D、E、F分別是AC、BC、SC的中點(diǎn),試判斷SG與平面DEF的位置關(guān)系,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線,給出下列四個(gè)命題:
①若②若③若④若
其中正確的命題是(   )
A.①④B.②④C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、b是兩條不同的直線,是兩個(gè)不同的平面,則下列四個(gè)命題中正確的是(    )
A.若⊥b,,則b∥B.若,則
C.若,,則 D.若⊥b,,b⊥,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,,,中點(diǎn),中點(diǎn),且為正三角形.

(1)求證:平面.
(2)求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體中,與平面所成的角的余弦值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,E、F分別是ABPD的中點(diǎn).

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求四面體PEFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐中,底面是直角梯形,,∠, ,平面⊥平面.

(1)求證:⊥平面
(2)求平面和平面所成二面角(小于)的大;
(3)在棱上是否存在點(diǎn)使得∥平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案