若直線y=kx+2與拋物線y2=4x僅有一個公共點,則實數(shù)k=________.

0,
分析:當(dāng)斜率k=0 時,直線y=kx+2平行于x軸,與拋物線y2=4x僅有一個公共點,當(dāng)斜率不等于0時,把y=kx+2 代入拋物線的方程化簡,由判別式△=0求得實數(shù)k的值.
解答:當(dāng)斜率k=0 時,直線y=kx+2平行于x軸,與拋物線y2=4x僅有一個公共點.
當(dāng)斜率不等于0時,把y=kx+2 代入拋物線y2=4x得 k2x2+(4k-4 )x+4=0,由題意可得,此方程有唯一解,
故判別式△=(4k-4)2-16k2=0,∴k=,
故答案為0,或
點評:本題考查直線和圓錐曲線的位置關(guān)系,一元二次方程有唯一解的條件,體現(xiàn)了分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+2與雙曲線x2-y2=6只有一個交點,那么實數(shù)k的值是( 。
A、
15
3
,1
B、±
15
3
C、±1
D、±
15
3
,±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx-2與拋物線y2=8x交于A、B兩點,若線段AB的中點的橫坐標(biāo)是2,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx-2與焦點在x軸上的橢圓
x2
5
+
y2
m
=1
恒有公共點,則實數(shù)m的取值范圍為
[4,5)
[4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若直線y=kx+2與圓(x-2)2+(y-3)2=1相切,求實數(shù)k的值;
(2)若直線y=kx+2與圓(x-2)2+(y-3)2=1相離,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1,(a>b>0)
左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),點A、B坐標(biāo)為A(a,0),B(0,b),若△ABC面積為
3
2
,∠BF2A=120°.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線y=kx+2與橢圓交于不同的兩點M、N,且以MN為直徑的圓恰好過原點,求實數(shù)k的取值;
(3)動點P使得
F1P
F1F2
、
PF1
PF2
、
F2F
1
F2P
成公差小于零的等差數(shù)列,記θ為向量
PF1
PF2
的夾角,求θ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案