在四棱錐P -ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.
(1)求四棱錐的體積.
(2)若E是PB的中點,求異面直線DE與PA所成角的余弦值.
科目:高中數(shù)學 來源: 題型:解答題
如圖在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
(1)證明:平面A1AC⊥平面AB1B;
(2)若點P為B1C1的中點,求三棱錐P-ABC與四棱錐P-AA1B1B的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知四棱錐P-ABCD的正視圖是一個底邊長為4、腰長為3的等腰三角形,如圖分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面PAB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在邊長為4的菱形ABCD中,∠DAB=60°.點E、F分別在邊CD、CB上,點E與點C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求證:BD⊥平面POA;
(2)記三棱錐P-ABD的體積為V1,四棱錐P-BDEF的體積為V2,求當PB取得最小值時V1∶V2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,E是以AB為直徑的半圓上異于點A、B的點,矩形ABCD所在的平面垂直于該半圓所在的平面,且AB=2AD=2
(1)求證:
(2)設(shè)平面與半圓弧的另一個交點為
①試證:
②若求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了并流入杯中,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由。(冰、水的體積差異忽略不計)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖是某三棱柱被削去一個底面后的直觀圖、側(cè)(左)視圖與俯視圖.已知CF=2AD,側(cè)視圖是邊長為2的等邊三角形,俯視圖是直角梯形,有關(guān)數(shù)據(jù)如圖所示.求該幾何體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com