已知四棱錐P-ABCD的正視圖是一個底邊長為4、腰長為3的等腰三角形,如圖分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面PAB的面積.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在體積為的正三棱錐中,長為,為棱的中點,求
(1)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,,
(1)證明:平面ACD平面ADE;
(2)記,表示三棱錐A-CBE的體積,求函數(shù)的解析式及最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,矩形ABCD中,AB=a,AD=b,過點D作DE⊥AC于E,交直線AB于F.現(xiàn)將△ACD沿對角線AC折起到△PAC的位置,使二面角PACB的大小為60°.過P作PH⊥EF于H.
(1)求證:PH⊥平面ABC;
(2)若a+b=2,求四面體PABC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,側(cè)棱SA底面ABCD,且SA=2,AD=DC=1, 點E在SD上,且
(1)證明:平面;
(2)求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4.如圖2所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,設(shè)點F是AB的中點.
圖1 圖2
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點,求三棱錐BDEG的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在四棱錐P -ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.
(1)求四棱錐的體積.
(2)若E是PB的中點,求異面直線DE與PA所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com