【題目】已知函數,.
(1)若函數的圖像與軸無交點,求的取值范圍;
(2)若方程在區(qū)間上存在實根,求的取值范圍;
(3)設函數,,當時若對任意的,總存在,使得,求的取值范圍.
【答案】(1);(2);(3)或.
【解析】
(1)函數與軸無交點,即方程沒有實數根,即可求得的取值范圍;(2)函數的對稱軸是,所以函數在上單調遞減,則需滿足;(3)根據題意可知,函數在上的函數值的取值集合是函數在上的函數值的取值集合的子集,對于函數,可分討論函數的值域,利用子集關系列不等式求的范圍.
(1)若函數的圖象與軸無關點,則方程的根的判別式,即,解得.
故的取值范圍為.
(2)因為函數的圖象的對稱軸是直線,
所以在上是減函數.
又在上存在零點,所以,即,解得.
故的取值范圍為.
(3)若對任意的,總存在,使得,則函數在上的函數值的取值集合是函數在上的函數值的取值集合的子集.
當時,函數圖象的對稱軸是直線,所以在上的函數值的取值集合為.
①當時,,不符合題意,舍去.
②當時,在上的值域為,只需,解得.
③當時,在上的值域為,只需,解得.
綜上,的取值范圍為或.
科目:高中數學 來源: 題型:
【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產生0到9之間取整數值的隨機數,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數作為一組,代表這三天的下雨情況.經隨機模擬試驗產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,這三天中恰有兩天下雨的概率近似為
A.0.35 B.0.25 C.0.20 D.0.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①若函數在區(qū)間上單調遞增,則;
②若 (且),則的取值范圍是;
③若函數,則對任意的,都有;
④若 (且),在區(qū)間上單調遞減,則.
其中所有正確命題的序號是______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,E,F分別是AB,PD的中點,若PA=AD=3,CD=
①求證:AF∥平面PCE
②求證:平面PCE⊥平面PCD
③求直線FC與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)請在所給的平面直角坐標系中畫出函數的圖象;
(2)根據函數的圖象回答下列問題:①求函數的單調區(qū)間;
②求函數的值域;③求關于的方程在區(qū)間上解的個數.(回答上述3個小題都只需直接寫出結果,不需給出演算步驟)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數,且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本萬元,每生產(百輛),需另投入成本萬元,且.由市場調研知,每輛車售價萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2018年的利潤(萬元)關于年產量(百輛)的函數關系式;(利潤=銷售額-成本)
(2)2018年產量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由國家公安部提出,國家質量監(jiān)督檢驗檢疫總局發(fā)布的《車輛駕駛人員血液、呼氣酒精含量閥值與檢驗標準()》于年月日正式實施.車輛駕駛人員酒飲后或者醉酒后駕車血液中的酒精含量閥值見表.經過反復試驗,一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”見圖,
喝瓶啤酒的情況
且圖表示的函數模型,則該人喝一瓶啤酒后至少經過多長時間才可以駕車(時間以整小時計算)?(參考數據:,)
( 。
駕駛行為類型 | 閥值 |
飲酒后駕車 | , |
醉酒后駕車 |
車輛駕車人員血液酒精含量閥值
A.B.C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com