【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點(diǎn)。

(1)若的中點(diǎn)為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

【答案】1)證明見解析(2360°

【解析】

1)連接、,由三角形中位線定理可得,由圓周角定理我們可得,由圓錐的幾何特征,可得,進(jìn)而由線面垂直的判定定理,得到平面,則,結(jié)合及線面垂直的判定定理得到平面

2)若,易得,又由,我們求出圓錐的底面半徑長(zhǎng)及圓錐的高,代入圓錐體積公式,即可得到圓錐的體積;

3)作于點(diǎn),由面面垂直的判定定理可得平面,作于點(diǎn),連,則為二面角的平面角,根據(jù)二面角的大小為,設(shè),進(jìn)而可求出的大小

1)如圖:

連接、,因?yàn)?/span>的中點(diǎn),所以

因?yàn)?/span>為圓的直徑,所以,

因?yàn)?/span>平面,所以,所以平面.又,,所以平面

2

,,又,

,

3)作于點(diǎn),平面平面且平面平面

平面.再作于點(diǎn),連,

為二面角的平面角

如圖:

,

設(shè),

,,,,

,

,解得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

上是減函數(shù);

上的最小值為

上至少有兩個(gè)零點(diǎn).

其中正確結(jié)論的序號(hào)為_________(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為F,短軸的兩個(gè)端點(diǎn)分別為A、B,且,為等邊三角形.

1)求橢圓C的方程;

2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為N;過點(diǎn)Mx軸的垂線,垂足為H,直線與橢圓C交于另一點(diǎn)J,若,試求以線段為直徑的圓的方程;

3)已知是過點(diǎn)A的兩條互相垂直的直線,直線與圓相交于兩點(diǎn),直線與橢圓C交于另一點(diǎn)R;求面積取最大值時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的方程為:,為圓上任意一點(diǎn),過軸的垂線,垂足為,點(diǎn)上,且.

(1)求點(diǎn)的軌跡的方程;

(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),點(diǎn)的坐標(biāo)為,的面積為,求的最大值,及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)ax2(aR)g(x)2ln x.

(1)討論函數(shù)F(x)f(x)g(x)的單調(diào)性;

(2)若方程f(x)g(x)在區(qū)間[,e]上有兩個(gè)不等解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,都為等邊三角形,且側(cè)面與底面互相垂直,的中點(diǎn),點(diǎn)在線段上,且為棱上一點(diǎn).

(1)試確定點(diǎn)的位置,使得平面

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線y=5,:

(1)曲線上與直線y=2x-4平行的切線方程.

(2)求過點(diǎn)P(0,5),且與曲線相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種籠具由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長(zhǎng)相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長(zhǎng)為,高為,圓錐的母線長(zhǎng)為.

1)求這種籠具的體積(結(jié)果精確到0.1);

2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)籠具,該材料的造價(jià)為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家祖暅提出原理:“冪勢(shì)既同,則積不容異”.其中“冪”是截面積,“勢(shì)”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個(gè)單位長(zhǎng)度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案