精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線y=5,:

(1)曲線上與直線y=2x-4平行的切線方程.

(2)求過點P(0,5),且與曲線相切的切線方程.

【答案】(1)16x-8y+25=0;(2)5x-4y+20=0.

【解析】

試題(1)求導數,利用曲線與直線y=2x﹣4平行,求出切點坐標,即可求出曲線與直線y=2x﹣4平行的切線的方程.

(2)設切點,可得切線方程,代入P,可得切點坐標,即可求出過點P(0,5)且與曲線相切的直線的方程.

試題解析:

(1)設切點為(x0,y0),y=5,y′=.

所以切線與y=2x-4平行,

所以=2,所以x0=,所以y0=.

則所求切線方程為y-=2,

16x-8y+25=0.

(2)因為點P(0,5)不在曲線y=5,

故需設切點坐標為M(x1,y1),

則切線斜率為.

又因為切線斜率為,

所以==,

所以2x1-2=x1,x1=4.

所以切點為M(4,10),斜率為,

所以切線方程為y-10=(x-4),

5x-4y+20=0.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若函數時取得極值,求實數的值;

(Ⅱ)當時,求零點的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是中國古代第一部數學專著,全書總結了戰(zhàn)國、秦、漢時期的數學成就!案鄿p損術”便出自其中,原文記載如下:“可半者半之,不可半者,副置分母、子之數,以少減多,更相減損,求其等也!逼浜诵乃枷刖幾g成如示框圖,若輸入的分別為45,63,則輸出的為( )

A. 2B. 3C. 5D. 9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點。

(1)若的中點為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區(qū)間和零點;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是定義在正整數集上的函數,且滿足:當成立時,總可推出 成立那么下列命題中正確的是(

A.成立,則當時均有成立

B.成立,則當時均有成立

C.成立,則當時均有成立

D.成立,則當時均有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在教材中,我們已研究出如下結論:平面內條直線最多可將平面分成個部分.現(xiàn)探究:空間內個平面最多可將空間分成多少個部分,.設空間內個平面最多可將空間分成個部分.

(1)求的值;

(2)用數學歸納法證明此結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代有著輝煌的數學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數學的重要文獻,這5部專著中有3部產生于漢、魏、晉、南北朝時期,某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在之間,將測量結果按如下方式分成六組:第1,第2,,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學校要從中選1名男生擔任足球隊長,求被選取的男生恰好在第5組或第6組的概率;

2)試估計該校高一年級全體男生身高的平均數(同一組中的數據用該組區(qū)間的中點值代表)與中位數;

3)現(xiàn)在從第5與第6組男生中選取兩名同學擔任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

查看答案和解析>>

同步練習冊答案