A. | -2 | B. | -1 | C. | 1 | D. | 2 |
分析 利用復數(shù)代數(shù)形式的乘除運算化簡復數(shù)z,求出對應的點的坐標,再由對應的點在直線x-y=1,列出方程求解即可得答案.
解答 解:復數(shù)z=$\frac{1+ai}{1-i}$=$\frac{(1+ai)(1+i)}{(1-i)(1+i)}$=$\frac{(1-a)+(a+1)i}{2}$=$\frac{1-a}{2}+\frac{a+1}{2}i$,
對應的點($\frac{1-a}{2}$,$\frac{a+1}{2}$)在直線x-y=1上,
∴$\frac{1-a}{2}$-$\frac{a+1}{2}$=1,
解得a=-1.
故選:B.
點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{9}$,9) | B. | [$\frac{1}{9}$,9] | C. | (0,$\frac{1}{9}$]∪[9,+∞) | D. | (0,$\frac{1}{9}$)∪(9,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-5,4] | B. | [-4,4] | C. | [-4,+∞) | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆江西吉安一中高三上學期段考一數(shù)學(理)試卷(解析版) 題型:解答題
設(shè)函數(shù),已知在處的切線相同.
(1)求的值及切線的方程;
(2)設(shè)函數(shù),若存在實數(shù)使得關(guān)于的不等式對上的任意實數(shù)恒成立,求的最小值及對應的的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com