【題目】為了比較兩種治療某病毒的藥(分別稱為甲藥,乙藥)的療效,某醫(yī)療團(tuán)隊(duì)隨機(jī)地選取了服用甲藥的患者和服用乙藥的患者進(jìn)行研究,根據(jù)研究的數(shù)據(jù),繪制了如圖1等高條形圖
.
(1)根據(jù)等高條形圖,判斷哪一種藥的治愈率更高,不用說(shuō)明理由;
(2)為了進(jìn)一步研究?jī)煞N藥的療效,從服用甲藥的治愈患者和服用乙藥的治愈患者中,分別抽取了10名,記錄他們的治療時(shí)間(單位:天),統(tǒng)計(jì)并繪制了如圖2莖葉圖,從莖葉圖看,哪一種藥的療效更好,并說(shuō)明理由;
(3)標(biāo)準(zhǔn)差s除了可以用來(lái)刻畫一組數(shù)據(jù)的離散程度外,還可以刻畫每個(gè)數(shù)據(jù)偏離平均水平的程度,如果出現(xiàn)了治療時(shí)間在(3s,3s)之外的患者,就認(rèn)為病毒有可能發(fā)生了變異,需要對(duì)該患者進(jìn)行進(jìn)一步檢查,若某服用甲藥的患者已經(jīng)治療了26天還未痊愈,請(qǐng)結(jié)合(2)中甲藥的數(shù)據(jù),判斷是否應(yīng)該對(duì)該患者進(jìn)行進(jìn)一步檢查?
參考公式:s,
參考數(shù)據(jù):48.
【答案】(1)甲藥的治愈率更高;(2)甲藥的療效更好,理由見(jiàn)解析;(3)應(yīng)該對(duì)該患者進(jìn)行進(jìn)一步檢查
【解析】
(1)結(jié)合條形等高圖即可直接判斷;
(2)從莖葉圖的集中趨勢(shì),中位數(shù),平均值方面分析即可判斷;
(3)分別求出,s,然后代入公式即可求解,作出判斷即可.
(1)甲藥的治愈率更高;
(2)甲藥的療效更好,
理由一:從莖葉圖可以看出,有的葉集中在莖0,1上,而服用乙藥患者的治療時(shí)間有的葉集中在莖1,2上,還有的葉集中在莖3上,所以甲藥的療效更好.
理由二:從莖葉圖可以看出,服用甲藥患者的治療的時(shí)間的中位數(shù)為10天,而服用乙藥患者的治療時(shí)間的中位數(shù)為12.5天,所以甲藥的療效更好.
理由三:從莖葉圖可以看出,服用甲藥患者的治療的時(shí)間的平均值為10天,而服用乙藥患者的治療時(shí)間的平均值為15天,所以甲藥的療效更好.
(3)由(2)中莖葉圖可知,服用甲藥患者的治療時(shí)間的平均值和方差分別為10,
s4.8,
則3s≈﹣4.4,24.3,而26>24.4,應(yīng)該對(duì)該患者進(jìn)行進(jìn)一步檢查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中中,是邊長(zhǎng)為的等邊三角形,底面為直角梯形,,,,.
(1)證明:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),有下列四個(gè)結(jié)論:
①為偶函數(shù);②的值域?yàn)?/span>;
③在上單調(diào)遞減;④在上恰有8個(gè)零點(diǎn),
其中所有正確結(jié)論的序號(hào)為( )
A.①③B.②④C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①函數(shù)的圖象把圓的面積兩等分;
②是周期為的函數(shù);
③函數(shù)在區(qū)間上有個(gè)零點(diǎn);
④函數(shù)在區(qū)間上單調(diào)遞減.
則正確結(jié)論的序號(hào)為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李先生家住小區(qū),他工作在科技園區(qū),從家開(kāi)車到公司上班路上有兩條路線(如圖),路線上有三個(gè)路口,各路口遇到紅燈的概率均為;路線上有兩個(gè)路口,各路口遇到紅燈的概率依次為.
(Ⅰ)若走路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為正實(shí)數(shù),且滿足a+b+c=1.證明:
(1)|a|+|b+c﹣1|;
(2)(a3+b3+c3)()≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】總體由編號(hào)為01,02,...,39,40的40個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為( )
A.23B.21C.35D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn)為曲線上的動(dòng)點(diǎn),求線段的中點(diǎn)到直線的距離的最大值.并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿波羅尼斯(古希臘數(shù)學(xué)家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒(méi)有插足的余地.他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.①若定點(diǎn)為,寫出的一個(gè)阿波羅尼斯圓的標(biāo)準(zhǔn)方程__________;②△中,,則當(dāng)△面積的最大值為時(shí),______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com