5.函數(shù)f(x)=lg(2-x-x2)的定義域?yàn)椋?2,1).

分析 根據(jù)函數(shù)y的解析式,列出使解析式有意義的不等式,求出解集即可.

解答 解:函數(shù)f(x)=lg(2-x-x2),
∴2-x-x2>0,
即x2+x-2<0,
解得-2<x<1,
∴函數(shù)f(x)的定義域?yàn)椋?2,1).
故答案為:(-2,1).

點(diǎn)評(píng) 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.定義在R上的函數(shù)y=f(x)對(duì)任意的x、y∈R,滿足條件:f(x+y)=f(x)+f(y)-1,且當(dāng)x>0時(shí),f(x)>1.
(1)求f(0)的值;
(2)證明:函數(shù)f(x)是R上的單調(diào)增函數(shù);
(3)解關(guān)于t的不等式f(2t2-t)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)$f(x)={x^2}-\frac{1}{2}$,f'(x)是f(x)的導(dǎo)數(shù),則函數(shù)g(x)=f'(x)cosx的部分圖象可以為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|x+a|.
(1)若a=2,解關(guān)于x的不等式f(x)+f(x-3)≥5;
(2)若關(guān)于x的不等式f(x)-f(x+2)+4≥|1-3m|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,3).
(1)求過(guò)點(diǎn)A與BC平行的直線方程.
(2)求過(guò)點(diǎn)B,并且在兩個(gè)坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.關(guān)于x的方程x3-ax+2=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(  )
A.(2,+∞)B.(3,+∞)C.(0,3 )D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列說(shuō)法正確的是( 。
A.已知購(gòu)買一張彩票中獎(jiǎng)的概率為$\frac{1}{1000}$,則購(gòu)買1000張這種彩票一定能中獎(jiǎng)
B.互斥事件一定是對(duì)立事件
C.如圖,直線l是變量x和y的線性回歸方程,則變量x和y相關(guān)系數(shù)在-1到0之間
D.若樣本x1,x2,…xn的方差是4,則x1-1,x2-1,…xn-1的方差是3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某科研機(jī)構(gòu)為了研究中年人禿發(fā)與心臟病是否有關(guān),隨機(jī)調(diào)查了一些中年人的情況,具體數(shù)據(jù)如表:根據(jù)表中數(shù)據(jù)得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因?yàn)镵2≥10.828,則斷定禿發(fā)與心臟病有關(guān)系,那么這種判斷出錯(cuò)的可能性為(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.0.1B.0.05C.0.01D.0.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$是奇函數(shù).
(1)求a,b的值;
(2)證明:對(duì)任意實(shí)數(shù)x,m,不等式f(x)<m2-3m+3恒成立;
(3)試判斷是否存在正數(shù)q,使函數(shù)g(x)=1+q(f(x)+$\frac{1}{2}$)在區(qū)間[0,2]上的值域?yàn)閇$\frac{7}{5}$,2],若存在,求出正數(shù)q;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案