18.設(shè)平面區(qū)域D是由雙曲線y2-$\frac{{x}^{2}}{4}$=1的兩條漸近線和拋物線y2=-8x的準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(diǎn)(x,y)∈D,則x+y的最小值為( 。
A.-1B.1C.0D.3

分析 先求出拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,畫出三角形平面區(qū)域,根據(jù)z=x+y的最小值為斜率為-1的直線的縱截距的最小值,即可求出z=x+y的最小值.

解答 解:拋物線y2=-8x的準(zhǔn)線方程為x=2,
雙曲線y2-$\frac{{x}^{2}}{4}$=1的兩條漸近線方程為y=±$\frac{1}{2}$x,
由題意,三角形平面區(qū)域的邊界為x=2,y=±$\frac{1}{2}$x,
設(shè)z=x+y即y=z-x,
則z=z-x的最小值為斜率為-1的直線的縱截距的最小值.
作出直線l0:y=-x,平移可得,
當(dāng)直線l0過原點(diǎn)時,取得最小值0.
故選:C.

點(diǎn)評 本題以雙曲線、拋物線為載體,考查線性規(guī)劃知識,考查函數(shù)的最值的求解,正確理解目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線的左、右焦點(diǎn)分別是F1、F2,過F2的直線交雙曲線的右支于P、Q兩點(diǎn),若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{10}{3}$C.2D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線2x2-y2=1的漸近線方程是( 。
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1和雙曲線C2:$\frac{{y}^{2}}{^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,其中b>a>0,則關(guān)于雙曲線C1與C2的命題.
①漸近線相同;
②焦點(diǎn)相同;
③離心率e1,e2滿足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=1;
④兩個雙曲線焦點(diǎn)在同一圓上,
其中所有正確的命題序號為( 。
A.①②③B.①③④C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)計(jì)算:2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x-3),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義某種運(yùn)算M=a?b,運(yùn)算原理如圖所示,則式子$(2tan\frac{π}{4})?sin\frac{π}{2}+(4cos\frac{π}{3})?{(\frac{1}{3})^{-1}}$的值為( 。
A.4B.8C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$a={log}_{\frac{2}{5}}2,b={(\frac{1}{2})}^{\frac{1}{5}},c={2}^{\frac{2}{5}}$,則a,b,c的大小關(guān)系是( 。
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖AC1是棱長為2的正方體,M為B1C1的中點(diǎn),給出下列命題:
①AB1與BC1成60°角;
②若$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{N{C}_{1}}$,面A1MN交CD于E,則CE=$\frac{1}{3}$;
③P點(diǎn)在正方形ABB1A1邊界及內(nèi)部運(yùn)動,且MP⊥DB1,則P點(diǎn)軌跡長等于$\sqrt{2}$;
④E,F(xiàn)分別在DB1和A1C1上,且$\frac{DE}{E{B}_{1}}$=$\frac{{A}_{1}F}{F{C}_{1}}$=2,直線EF與AD1,A1D所成角分別是α,β,則α+β=$\frac{π}{2}$.
其中正確的命題有①③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC中,A、B、C所對的邊分別為a、b、c,且bsinB=(sinA-sinC)(a+c)數(shù)列an=n2n-1(|sinnA|+|cosnA|),
(1)求A;  
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案