6.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1和雙曲線C2:$\frac{{y}^{2}}{^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,其中b>a>0,則關(guān)于雙曲線C1與C2的命題.
①漸近線相同;
②焦點相同;
③離心率e1,e2滿足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=1;
④兩個雙曲線焦點在同一圓上,
其中所有正確的命題序號為( 。
A.①②③B.①③④C.②③④D.③④

分析 分別求得雙曲線的漸近線方程和焦點坐標、以及離心率,即可判斷①③④正確,②錯誤.

解答 解:由雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1和雙曲線C2:$\frac{{y}^{2}}{^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,
可得漸近線方程均為y=±$\frac{a}$x,故①正確;
雙曲線C1的焦點為(±$\sqrt{{a}^{2}+^{2}}$,0),雙曲線C2的焦點為(0,±$\sqrt{{a}^{2}+^{2}}$),
故②錯誤;
離心率e1,e2滿足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=$\frac{1}{\frac{{a}^{2}+^{2}}{{a}^{2}}}$+$\frac{1}{\frac{{a}^{2}+^{2}}{^{2}}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}+^{2}}$=1,
故③正確;
由焦點為(±$\sqrt{{a}^{2}+^{2}}$,0),(0,±$\sqrt{{a}^{2}+^{2}}$),可得它們在圓x2+y2=a2+b2上,
故④正確.
故選:B.

點評 本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和焦點坐標和離心率,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知(5,0)是雙曲線$\frac{x^2}{16}-\frac{y^2}{b^2}$=1(b>0)的一個焦點,則b=3,該雙曲線的漸近線方程為y=±$\frac{3}{4}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的各項均為整數(shù),其前n項和為Sn.規(guī)定:若數(shù)列{an}滿足前r項依次成公差為1的等差數(shù)列,從第r-1項起往后依次成公比為2的等比數(shù)列,則稱數(shù)列{an}為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,求數(shù)列{an}的通項公式;
(2)在(1)的條件下,求出Sn,并證明:對任意n∈N*,anSn≥a6S6;
(3)若數(shù)列{an}為“6關(guān)聯(lián)數(shù)列”,當n≥6時,在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成一個公差為dn的等差數(shù)列,求dn,并探究在數(shù)列{dn}中是否存在三項dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F1作傾斜角為$\frac{π}{6}$的直線交雙曲線的右支交于點P,若|PF2|=|F1F2|,則雙曲線的離心率是( 。
A.$\sqrt{3}$-1B.$\frac{1+\sqrt{3}}{2}$C.$\sqrt{3}$+1D.$\frac{\sqrt{2}+\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,直線AB經(jīng)過圓O上的點C,并且OA=OB,CA=CB,圓O交直線OB于點E、D,其中D在線段OB上.連結(jié)EC,CD.
(Ⅰ)證明:直線AB是圓O的切線;
(Ⅱ)若tan∠CED=$\frac{1}{2}$,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-4x+3),則函數(shù)f(x)的單調(diào)遞減區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)平面區(qū)域D是由雙曲線y2-$\frac{{x}^{2}}{4}$=1的兩條漸近線和拋物線y2=-8x的準線所圍成的三角形(含邊界與內(nèi)部).若點(x,y)∈D,則x+y的最小值為( 。
A.-1B.1C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U=R,A={-1},B={x|lg(x2-2)=lgx},則(  )
A.A⊆BB.A∪B=∅C.A?BD.(∁UA)∩B={2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}滿足:an+1=4+an,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)若bn為an與an+1的等比中項,求數(shù)列{$\frac{1}{_{n}^{2}}$}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案