分析 根據(jù)向量數(shù)量積的關(guān)系進(jìn)行化簡,結(jié)合向量投影的定義進(jìn)行求解即可.
解答 解:∵$\overrightarrow{a}$與$\overrightarrow b$的夾角為120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\overrightarrow b)$,且$|\overrightarrow a|=2$,
∴($\overrightarrow{a}$+$\overrightarrow b$)•($\overrightarrow{a}$-$\overrightarrow b$)=0,即$\overrightarrow{a}$2=$\overrightarrow b$2,則|$\overrightarrow{a}$|=|$\overrightarrow b$|=2,
則$\overrightarrow{a}$•$\overrightarrow b$=|$\overrightarrow{a}$||$\overrightarrow b$|cos120°=$-\frac{1}{2}×2×2$=-2,
則$\overrightarrow$在$\overrightarrow{a}$方向上的正射影為$\frac{\overrightarrow•\overrightarrow{a}}{|\overrightarrow{a}|}$=$\frac{-2}{2}=-1$,
故答案為:-1
點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)向量垂直求出$\overrightarrow{a}$•$\overrightarrow b$以及利用向量射影的定義是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x | B. | $-{(\frac{1}{2})^x}$ | C. | ${({\frac{1}{2}})^x}$ | D. | -2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 12 | C. | 15 | D. | 18 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com