6.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B={x|-1<x<n},則m=-1,n=1.

分析 由題意,可先化簡A集合,再由B集合的形式及A∩B=(-1,n)直接作出判斷,即可得出兩個參數(shù)的值.

解答 解:A={x∈R||x+2|<3}={x∈R|-5<x<1},
又集合B={x∈R|(x-m)(x-2)<0},A∩B=(-1,n).
如圖

由圖知m=-1,n=1,
故答案為-1,1.

點評 本題考查集合關(guān)系中的參數(shù)取值問題,解題的關(guān)鍵是理解交的運算及一元二次不等式的解集的形式,本題一定的探究性,考查分析判斷推理的能力

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.為了解戶籍與性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為100的調(diào)查樣本.其中:城鎮(zhèn)戶籍與農(nóng)村戶籍各50人;男性60人,女性40人.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是( 。
A.是否傾向選擇生育二胎與戶籍無關(guān)
B.是否傾向選擇生育二胎與性別無關(guān)
C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,a,b,c分別是三內(nèi)角A,B,C的對邊,且3cosB=2sin($\frac{π}{3}$+A)•sin($\frac{π}{3}$-A)+2sin2A.
(1)求角B的值;
(2)若b=2$\sqrt{3}$,求三角形ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.△ABC中,tanA>1是A>$\frac{π}{4}$的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在數(shù)列{an}中,a1=-$\frac{1}{4}$,an=1-$\frac{1}{{{a_{n-1}}}}$(n≥2,n∈N*),則a2016的值為(  )
A.$-\frac{1}{4}$B.5C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)x1,x2是方程x2-xsin$\frac{3π}{5}$+cos$\frac{3π}{5}$=0的兩個根,則arctanx1+arctanx2的值為$\frac{π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已$\overrightarrow{a}$與$\overrightarrow b$的夾角為120°,若$(\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-\overrightarrow b)$,且$|\overrightarrow a|=2$,$\overrightarrow$在$\overrightarrow{a}$方向上的正射影的數(shù)量為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在等差數(shù)列{an}中,a3+a7=10,則a2+a4+a6+a8=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,已知三棱柱ABC-A1B1C1中,D是棱BC1上一點,且$\overrightarrow{BD}$=2$\overrightarrow{D{C}_{1}}$,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,用$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$表示向量$\overrightarrow{AD}$,則$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$+$\frac{2}{3}\overrightarrow{c}$.

查看答案和解析>>

同步練習(xí)冊答案