【題目】已知數(shù)列{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=,anbn+1+bn+1=nbn

分別求數(shù)列{an},{bn}的通項公式;

令cn= an bn,求數(shù)列{cn}的前n項和Tn

【答案】1an=3n-1,bn=,2Tn= - 6n+731-n .

【解析】

試題解析:anbn+1+bn+1=nbn

當(dāng)n=1時,a1b2+b2=b1.b1=1,b2=, a1=2,

{an}是公差為3的等差數(shù)列, an=3n-1,

.

即數(shù)列{bn}是以1為首項,以為公比的等比數(shù)列, bn=,

cn= an bn=3n-1

Tn=2×+5×+8×+……+3n-1

Tn= 2×+5×+8×+……+3n-1

- Tn=2 +3×+3×……+3× -3n-1

=2 + 3×-3n-1

Tn= - 6n+731-n .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , , 均可為一個三角形的三邊長,則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時間的情況,從全校學(xué)生中抽取人,統(tǒng)計他們平均每天在家的時間在家時間在小時以上的就認為具有屬性,否則就認為不具有屬性

具有屬性

不具有屬性

總計

男生

20

50

70

女生

10

40

50

總計

30

90

120

1請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過

的前提下認為是否具有屬性與性別有關(guān)?

2采用分層抽樣的方法從具有屬性的學(xué)生里抽取一個人的樣本,其中男生和女生各多少人?

人中隨機選取人做進一步的調(diào)查,求選取的人至少有名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓左、右焦點,點在橢圓上,且軸,的周長為6.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是橢圓上異于點的兩個動點,如果直線與直線的傾斜角互補,證明:直線的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)時, 恒成立, 求整數(shù)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個鋁合金窗分為上、下兩欄,四周框架和中間隔檔的材料為鋁合金,寬均為6,上欄與下欄的框內(nèi)高度(不含鋁合金部分)的比為1:2,此鋁合金窗占用的墻面面積為28800,設(shè)該鋁合金窗的寬和高分別為,鋁合金窗的透光部分的面積為.

(1)試用表示

(2)若要使最大,則鋁合金窗的寬和高分別為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,底面底面是直角梯形,,,的中點

(1)求證:平面平面

(2)若二面角的余弦值為,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對某食品廠生產(chǎn)甲、乙兩種食品進行了檢測調(diào)研,檢測某種有害微量元素的含量,隨機在兩種食品中各抽取了10個批次的食品,每個批次各隨機地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當(dāng)食品中的有害微量元素的含量在時為一等品,在為二等品,20以上為劣質(zhì)品.

1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個數(shù)據(jù),再分別從這5個數(shù)據(jù)中各選取2個,求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;

2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來的盈利為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案