精英家教網 > 高中數學 > 題目詳情
已知拋物線y2=8x與橢圓有公共焦點F,且橢圓過點D(-).
(1)求橢圓方程;
(2)點A、B是橢圓的上下頂點,點C為右頂點,記過點A、B、C的圓為⊙M,過點D作⊙M的切線l,求直線l的方程;
(3)過點A作互相垂直的兩條直線分別交橢圓于點P、Q,則直線PQ是否經過定點,若是,求出該點坐標,若不經過,說明理由.
【答案】分析:(1)根據拋物線y2=8x與橢圓有公共焦點F,確定c=2,利用橢圓過點D(-),代入橢圓方程,求出a,b,即可求橢圓方程;
(2)確定⊙M的方程,分類討論,利用圓心到直線的距離等于半徑,即可求得直線l的方程;
(3)設AP、AQ的方程代入橢圓方程,求得P,Q的坐標,可得直線PQ的方程,令x=0,即可得到直線PQ過定點.
解答:解:(1)拋物線y2=8x的焦點F(2,0),
∵拋物線y2=8x與橢圓有公共焦點F,∴c=2,
又橢圓過點D(-),∴,得a2=8,b2=4
∴所求橢圓方程為;
(2)由題意,A(0,2),B(0,-2),C(2,0),則
設M(m,0),由|MA|=|MC|,可得m2+4=(-m)2,∴m=,m2+4=
∴⊙M:(x-2+y2=
直線l斜率不存在時,x=-
直線l斜率存在時,設為y-=k(x+
∴d==,解得k=-
∴直線l為x=-x+12y-10=0;
(3)顯然,兩直線斜率存在,設AP:y=k′x+2
代入橢圓方程,得(1+2k′2)x2+8k′x=0,解得x=或x=0
∴點P(
同理得Q(,
直線PQ:y-=(x-)             
令x=0,得y=-=-,
∴直線PQ過定點(0,-).
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查直線恒過定點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知拋物線y2=8x的準線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于A,B兩點,雙曲線的一條漸近線方程是y=2
2
x
,點F是拋物線的焦點,且△FAB是直角三角形,則雙曲線的標準方程是(  )
A、
x2
16
-
y2
2
=1
B、x2-
y2
8
=1
C、
x2
2
-
y2
16
=1
D、
x2
8
-y2=1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線y2=8x與橢圓
x2
a2
+
y2
b2
=1有公共焦點F,且橢圓過點D(-
2
,
3
).
(1)求橢圓方程;
(2)點A、B是橢圓的上下頂點,點C為右頂點,記過點A、B、C的圓為⊙M,過點D作⊙M的切線l,求直線l的方程;
(3)過點A作互相垂直的兩條直線分別交橢圓于點P、Q,則直線PQ是否經過定點,若是,求出該點坐標,若不經過,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)已知拋物線y2=8x上一點P到焦點的距離是6,則點P的坐標是
(4,±4
2
)
(4,±4
2
)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知拋物線y2=8x的準線l與雙曲線C:
x2
a2
-y2=1
相切,則雙曲線C的離心率e=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線y2=8x的焦點是雙曲線
x2
a2
-
y2
3
 
=1(a>0)
的右焦點,則雙曲線的漸近線方程為
 

查看答案和解析>>

同步練習冊答案