如圖所示,已知是圓的直徑,是弦,,垂足為,平分。
(1)求證:直線與圓的相切;
(2)求證:。
(Ⅰ)利用條件得到,所以是的切線.(Ⅱ)利用三角形相似證明
解析試題分析:(Ⅰ)連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2e/2/1bwt83.png" style="vertical-align:middle;" />,所以. 2分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/50/5/qvfnn.png" style="vertical-align:middle;" />,所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a1/1/atocu3.png" style="vertical-align:middle;" />平分,所以, 4分
所以,即,所以是的切線. 5分
(Ⅱ)連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bd/7/4fmm51.png" style="vertical-align:middle;" />是圓的直徑,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3d/7/1wgcd3.png" style="vertical-align:middle;" />, 8分
所以△∽△,所以,即. 10分
考點(diǎn):本題考查了直線與圓的性質(zhì)及三角形的相似
點(diǎn)評:平面幾何選講在高考中是比較容易的題目,在備考中,要熟練掌握考綱要求的幾個(gè)定理如射影定理、圓周角定理、相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理等.考題多數(shù)是以證明四點(diǎn)共圓、求角度、線段長度、比值等,并能靈活應(yīng)用。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),
且BCAE=DCAF,B、E、F、C四點(diǎn)共圓.
(Ⅰ)證明:CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA,求過B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,,,,四點(diǎn)共圓,與的延長線交于點(diǎn),點(diǎn)在的延長線上.
(1)若,,求的值;
(2)若∥,求證:線段,,成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)在軸上,點(diǎn)為線段的中點(diǎn)
(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形外接圓的圓心,求圓的方程;
(Ⅲ)若動圓過點(diǎn)且與圓內(nèi)切,求動圓的圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選修4—1:幾何證明選講
如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于 E點(diǎn),F(xiàn)為CE上一點(diǎn),且
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)M在菱形ABCD的BC邊上,連結(jié)AM交BD于點(diǎn)E,過菱形ABCD的頂點(diǎn)C作CN∥AM,分別交BD、AD于點(diǎn)F、N,連結(jié)AF、CE.判斷四邊形AECF的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,已知是的切線,為切點(diǎn),是的割線,與交于兩點(diǎn),圓心在的內(nèi)部,點(diǎn)是的中點(diǎn).
(1)證明四點(diǎn)共圓;
(2)求的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com