如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)軸上,點(diǎn)為線段的中點(diǎn)

(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形外接圓的圓心,求圓的方程;
(Ⅲ)若動(dòng)圓過點(diǎn)且與圓內(nèi)切,求動(dòng)圓的圓心的軌跡方程.

(Ⅰ) (Ⅱ)(Ⅲ)

解析試題分析:(Ⅰ)∵     1分
       3分
                    5分
(Ⅱ)在上式中,令得:    6分
∴圓心.       7分
又∵.     8分
∴外接圓的方程為    9分
(Ⅲ)∵
∵圓過點(diǎn),∴是該圓的半徑,
又∵動(dòng)圓與圓內(nèi)切,

. 
∴點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為3的橢圓.       11分
.                     12分
∴軌跡方程為
考點(diǎn):本題主要考查直線方程、圓的方程、橢圓的定義及其標(biāo)準(zhǔn)方程。
點(diǎn)評(píng):中檔題,本題解答思路明確,在確定軌跡方程過程中,利用了橢圓的定義。求軌跡方程的方法主要有:定義法,代入法,參數(shù)法等。本題較為容易。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,、、是圓上三點(diǎn),的角平分線,交圓,過作圓的切線交的 延長(zhǎng)線于.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓與圓內(nèi)切于點(diǎn),其半徑分別為,圓的弦交圓于點(diǎn)不在上),求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是圓內(nèi)接四邊形,延長(zhǎng)與的延長(zhǎng)線交于點(diǎn),且, .

(1)求證:;
(2)當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是☉的內(nèi)接四邊形,不經(jīng)過點(diǎn),平分,經(jīng)過點(diǎn)的直線分別交的延長(zhǎng)線于點(diǎn),且,證明:

(1);
(2)是☉的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知是圓的直徑,是弦,,垂足為平分。

(1)求證:直線與圓的相切;
(2)求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知為銳角△的內(nèi)心,且,點(diǎn)為內(nèi)切圓與邊的切點(diǎn),過點(diǎn)作直線的垂線,垂足為

(1)求證:
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的外接圓的切線的延長(zhǎng)線交于點(diǎn),的平分線與交于點(diǎn)D.

(1)求證:
(2)若的外接圓的直徑,且,=1.求長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,現(xiàn)在要在一塊半徑為1m.圓心角為60°的扇形紙板AOB上剪出一個(gè)平行四邊形MNPQ,使點(diǎn)PAB弧上,點(diǎn)QOA上,點(diǎn)M,NOB上,設(shè)∠BOPθ,YMNPQ的面積為S
(1)求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值及相應(yīng)θ的值
1.  
2.   

查看答案和解析>>

同步練習(xí)冊(cè)答案