設函數(shù)f(x)=
1
3
x3-
1
2
ax2+(a2-3)x+1

(1)若函數(shù)f(x)在(-∞,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的單調遞減區(qū)間為(m,n),且{x|x<0}∩{m,n}≠∅.求實數(shù)a的取值范圍.
分析:(1)由題意可得f'(x)=x2-ax+(a2-3)≥0在R上恒成立,故△=a2-4(a2-3)≤0,由此求得實數(shù)a的取值范圍.
(2)由題意可得f'(x)=0的兩根為m,n且m,n中至少有一個負根,故有f'(0)<0,或
△=a2-4(a2-3)>0
a
2
<0
f′(0)≥0
,由此求得實數(shù)a的取值范圍.
解答:解:(1)∵f'(x)=x2-ax+(a2-3),函數(shù)f(x)在(-∞,+∞)上是增函數(shù),
∴f'(x)=x2-ax+(a2-3)≥0在R上恒成立.(3分)
∴△=a2-4(a2-3)≤0,
∴a≤-2或a≥2,即a∈(-∞,-2]∪[2,+∞).(6分)
(2)∵f(x)的單調遞減區(qū)間為(m,n),且{x|x<0}∩{m,n}≠?.
∴f'(x)=0的兩根為m,n且m,n中至少有一個負根.(8分)
∴f'(0)<0,或
△=a2-4(a2-3)>0
a
2
<0
f′(0)≥0
,(10分)
a∈(-2,
3
)
,即實數(shù)a的取值范圍為 (-2,
3
)
.(12分)
點評:本題主要考查一元二次方程的根的分布與系數(shù)的關系,利用導數(shù)研究函數(shù)的單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)設函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當a=1時,過原點的直線與函數(shù)f(x)的圖象相切于點P,求點P的坐標;
(Ⅱ)當0<a<
1
2
時,求函數(shù)f(x)的單調區(qū)間;
(Ⅲ)當a=
1
3
時,設函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.(e是自然對數(shù)的底,e<
3
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•株洲模擬)設x0是函數(shù)f(x)=(
1
3
)x-log2x
的零點.若0<a<x0,則f(a)的值滿足( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
(
1
3
)
x
-8(x≤0)
x
     (x>0)
,若f(a)>1,則實數(shù)a的取值范圍為
a>1或a<-2
a>1或a<-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
3
(a-1)x3-
1
2
ax2+x
(a∈R)[
(Ⅰ)若y=f(x)在點(1,f(1))處的切線與y軸和直線x-2y=0圍成的三角形面積等于
1
4
,求a的值;
(II)當a<2時,討論f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

同步練習冊答案