7.已知圓 x2+y2+2x-4y+1=0,關(guān)于直線2ax-by+2=0(a,b∈R+)對稱,則$\frac{3}{a}$+$\frac{2}$的最小值為$5+2\sqrt{6}$.

分析 由題意直線2ax-by+2=0(a,b∈R+)經(jīng)過圓x2+y2+2x-4y+1=0的圓心(-1,2),從而a+b=1,進而$\frac{3}{a}$+$\frac{2}$=($\frac{3}{a}$+$\frac{2}$)(a+b),由此能求出$\frac{3}{a}$+$\frac{2}$的最小值.

解答 解:∵圓 x2+y2+2x-4y+1=0,關(guān)于直線2ax-by+2=0(a,b∈R+)對稱,
∴直線2ax-by+2=0(a,b∈R+)經(jīng)過圓x2+y2+2x-4y+1=0的圓心(-1,2),
∴-2a-2b+2=0,即a+b=1,
∴$\frac{3}{a}$+$\frac{2}$=($\frac{3}{a}$+$\frac{2}$)(a+b)=$\frac{2a}+\frac{3b}{a}+5$≥2$\sqrt{\frac{2a}•\frac{3b}{a}}$+5=5+2$\sqrt{6}$.
當且僅當$\frac{2a}{2}=\frac{3b}{a}$時取等號,
∴$\frac{3}{a}$+$\frac{2}$的最小值為$5+2\sqrt{6}$.
故答案為:$5+2\sqrt{6}$.

點評 本題考查代數(shù)式的最小值的求法,是中檔題,解題時要認真審題,注意圓的性質(zhì)和基本不等式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.我們定義漸近線:已知曲線C,如果存在一條直線,當曲線C上任意一點M沿曲線運動時,M可無限趨近于該直線但永遠達不到,那么這條直線稱為這條曲線的漸近線:下列函數(shù):①y=x${\;}^{\frac{1}{3}}$;②y=2x-1;③y=lg(x-1);④y=$\frac{x+1}{2x-1}$;其中有漸近線的函數(shù)的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線l:y=x+m(m∈R),雙曲線E:$\frac{x^2}{2}-\frac{y^2}{b^2}$=1(b>0).
(1)若直線l與雙曲線E的其中一條漸近線平行,求雙曲線E的離心率;
(2)若直線l過雙曲線的右焦點F2,與雙曲線交于P、Q兩點,且$\overrightarrow{FP}=\frac{1}{5}\overrightarrow{FQ}$,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知α是第三象限角,tan(2π-α)=-$\frac{5}{12}$,則sinα等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{5}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=($\sqrt{3}$,cos4ωx),$\overrightarrow$=(sin4ωx,1)(ω>0),令f(x)=$\overrightarrow{a}$•$\overrightarrow$且f(x)的周期為$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)若x∈[0,$\frac{π}{4}$]時f(x)+m≤2,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知b>1,直線(b2+1)x+ay+2=0與直線x-(b-1)y-1=0互相垂直,則a的最小值等于( 。
A.$2\sqrt{2}-1$B.$2\sqrt{2}+1$C.$2\sqrt{2}+2$D.$2\sqrt{2}-2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,則$\frac{x}{y}$的取值范圍是[$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,要給①,②,③,④四塊區(qū)域分別涂上五種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同顏色,則不同的涂色方法種數(shù)為( 。
A.320B.160C.96D.60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知定義在R上的偶函數(shù)f(x),滿足f(x+4)=-f(x),且當x∈(-4,-2]時,f(x)=log2(x+4),則f(2010)+f(2011)的值為( 。
A.-2B.-1C.2D.1

查看答案和解析>>

同步練習冊答案