【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值和最小值;
(3)若對任意的,均存在,使得,求的取值范圍.
【答案】(1);(2)最大值,最小值是;(3)
【解析】
(1)先確定切點(diǎn)縱坐標(biāo),在求導(dǎo),求出切線的斜率,最后寫出切線方程;(2)求導(dǎo)研究函數(shù)在區(qū)間上的單調(diào)性,在求最值(3)由題意求出(用含a的式子表示),根據(jù)題意:,在求出a的取值范圍
(1)時(shí),,
,
曲線在點(diǎn)處的切線方程為:
,即
(2)時(shí),,
由,得
當(dāng)時(shí),;當(dāng)時(shí),
在上單調(diào)遞增;在上單調(diào)遞減.
又 又
函數(shù)在區(qū)間上的最大值是;最小值是
(3)
當(dāng)時(shí),的值域是
的定義域?yàn)?/span>,
①當(dāng)時(shí),,在定義域?yàn)?/span>上單調(diào)遞增,且值域是
所以,對任意的,均存在,使得
②當(dāng)時(shí),由 得
當(dāng)時(shí),,當(dāng)時(shí),
當(dāng)時(shí),取得最大值
所以“對任意的,均存在,使得”等價(jià)于
,即,解得
綜合①,②得的取值范圍是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)求的軌跡
(2)過軌跡上任意一點(diǎn)作圓的切線,設(shè)直線的斜率分別是,試問在三個(gè)斜率都存在且不為0的條件下, 是否是定值,請說明理由,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,,分別是橢圓的左、右焦點(diǎn),離心率,過橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;
(Ⅲ)設(shè)點(diǎn)是一個(gè)動點(diǎn),若直線的斜率存在,且為中點(diǎn),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為矩形,平面為的中點(diǎn)
(1)證明:平面;
(2)證明:平面;
(3)若三棱錐的體積為,求點(diǎn)D到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若關(guān)于x的不等式ax2﹣3x+2>0(a∈R)的解集為{x|x<1或x>b},求a,b的值;
(2)解關(guān)于x的不等式ax2﹣3x+2>5﹣ax(a∈R).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)用簡單隨機(jī)抽樣方法抽取了100名同學(xué),對其社會實(shí)踐次數(shù)進(jìn)行調(diào)查,結(jié)果如下:
男同學(xué)人數(shù) | 7 | 15 | 11 | 12 | 2 | 1 |
女同學(xué)人數(shù) | 5 | 13 | 20 | 9 | 3 | 2 |
若將社會實(shí)踐次數(shù)不低于12次的學(xué)生稱為“社會實(shí)踐標(biāo)兵”.
(Ⅰ)將頻率視為概率,估計(jì)該校1600名學(xué)生中“社會實(shí)踐標(biāo)兵”有多少人?
(Ⅱ)從已抽取的8名“社會實(shí)踐標(biāo)兵”中隨機(jī)抽取4位同學(xué)參加社會實(shí)踐表彰活動.
(i)設(shè)為事件“抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)”,求事件發(fā)生的概率;
(ii)用表示抽取的“社會實(shí)踐標(biāo)兵”中男生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列與中,,數(shù)列的前n項(xiàng)和滿足,為與的等比中項(xiàng),.
(Ⅰ)求,的值;
(Ⅱ)求數(shù)列與的通項(xiàng)公式;
(Ⅲ)設(shè),證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,且是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在一點(diǎn),使得與所成的角為? 若存在,求出的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com