分析 (1)根據題意,利用切線長定理,再利用雙曲線的定義,把|PF1|-|PF2|=2a,轉化為|HF1|-|HF2|=2a,從而求得點H的橫坐標;
(2)由已知向量等式可得M為△PF1F2的內心,由三角形的面積公式作差,結合雙曲線定義可得答案.
解答 (1)證明:如圖所示:F1(-a,0)、F2(a,0),
設內切圓與x軸的切點是點H,
PF1、PF2與內切圓的切點分別為A、B,
由雙曲線的定義可得|PF1|-|PF2|=2a,
由圓的切線長定理知,|PA|=|PB|,故|AF1|-|BF2 |=2a,
即|HF1|-|HF2|=2a,
設內切圓的圓心橫坐標為x,則點H的橫坐標為x,
故 (x+c)-(c-x)=2a,
∴x=a;
(2)解:由$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$=$\frac{\overrightarrow{{{F}_{2}F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$,得$\frac{|\overrightarrow{P{F}_{1}}||\overrightarrow{M{F}_{1}}|cos∠M{F}_{1}P}{|\overrightarrow{P{F}_{1}}|}$=$\frac{|\overrightarrow{{F}_{2}{F}_{1}}||\overrightarrow{M{F}_{1}}|cos∠M{F}_{1}{F}_{2}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$,
∴cos∠MF1P=cos∠MF1F2,可得M在∠PF1F2的角分線上,
又M(a,2),結合(1)可知,M為△PF1F2的內心,
∴${S}_{△PM{F}_{1}}-{S}_{△PM{F}_{2}}$=$\frac{1}{2}|P{F}_{1}|×2-\frac{1}{2}|P{F}_{2}|×2=|P{F}_{1}|-|P{F}_{2}|$=2a.
點評 本題考查直線與圓錐曲線位置關系的應用,考查了雙曲線的簡單性質,考查數學轉化思想方法,是中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{21}$ | B. | $\frac{2\sqrt{29}}{3}$ | C. | 2$\sqrt{21}$ | D. | 2$\sqrt{7}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1,1 | B. | -1,-1 | C. | 2,-2 | D. | 2,2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com