【題目】已知a>0且a≠1,設(shè)
命題p:函數(shù)y=logax在區(qū)間(0,+∞)內(nèi)單調(diào)遞減;
q:曲線y=x2+(2a﹣3)x+1與x軸有兩個(gè)不同的交點(diǎn),
如果p∧q為真命題,試求a的取值范圍.

【答案】解:當(dāng)P為真時(shí),0<a<1,
當(dāng)Q為真時(shí),△=(2a﹣3)2﹣4>0,即 a> 或a< ,
如果p∧q為真命題,則p,q均為真命題,
∵“P且Q”為假,“P或Q”為真,
∴P與Q必是一真一假,
,
∴0<a<
【解析】分別求出當(dāng)P為真時(shí),當(dāng)Q為真時(shí)的a的范圍,根據(jù)p∧q為真命題得到關(guān)于a的不等式組,解出即可.
【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假的相關(guān)知識(shí)點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn),且PA=AD.

(1)求證:PB∥平面AEC;
(2)求證:AE⊥平面PCD;
(3)設(shè)二面角D﹣AE﹣C為60°,且AP=1,求D到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一果農(nóng)種植了1000棵果樹,為估計(jì)其產(chǎn)量,從中隨機(jī)選取20棵果樹的產(chǎn)量(單位:kg)作為樣本數(shù)據(jù),得到如圖所示的頻率分布直方圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹棵數(shù)為8,

(1)求頻率分布直方圖中a,b的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這20棵果樹產(chǎn)量的中位數(shù);
(3)根據(jù)頻率分布直方圖,估計(jì)這1000棵果樹的總產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓(x+1)2+y2=8內(nèi)有一點(diǎn)P(﹣1,2),AB過點(diǎn)P,
(1)若弦長 ,求直線AB的傾斜角;
(2)若圓上恰有三點(diǎn)到直線AB的距離等于 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐S﹣ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分別交AC、SC于D、E,又SA=AB,SB=BC,

(1)求證:BD⊥平面SAC;
(2)求二面角E﹣BD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 的離心率 ,橢圓上一點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)直線l與橢圓交于A,B兩點(diǎn),且AB中點(diǎn)為 ,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].已知圖中x=0.018,則由直觀圖估算出中位數(shù)(精確到0.1)的值為(

A.75.5
B.75.2
C.75.1
D.75.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中.
(1)設(shè) = ,求證:△ABC是等腰三角形;
(2)設(shè)向量 =(2sinC,﹣ ), =(sin2C,2cos2 ﹣1),且 ,若sinA= ,求sin( ﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是(
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

同步練習(xí)冊(cè)答案